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ABSTRACT

An approximate technique for the solution of mixed

boundary value problems has been developed. The

thodology consists of superposing Neumann-specified
-vlutions to Laplace's equation according to a least

uares criterion such that the true mixed boundary

nditions are approximated. In this work an iso-
thermal circular disk supplying heat to an otherwise
insulated semi-infinite coaxial cylinder has been
investigated. Superposition of two to four different
Neumann-specified solutions gives the thermal constric—
tion resistance parameter for a wide range of relative
contact sizes. In addition a simple but accurate
correlation of the final results has been provided.

NOMENCLATURE

a - contact radius

AL - total contact area

b -~ flux tube radius

Cj - linear scaling factors of Neumann solutions

Dn - series coefficients

E ~ total error squared

fj ~ constriction temperature rise of each Neumann
solution

Fj ~ function relating contact flux to series

coefficients

&3 ~ form of specified flux profiles

Jo(+) -~ Bessel function of first kind, zero order

J1(-) - Bessel function of first kind, first order

k - thermal conductivity

M - number of linearly superposed Neumann
solutions

N - number of test points

qj - contact flux distribution

9, - center-line contact flux

", - uniform flux in tube at large depth

~ total flux entering tube
- total flux due to each Neumann solution
- polar coordinate
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R¢ - constriction resistance

T - temperature

Te - constriction temperature rise

Te - average constriction temperature rise

Ts - specified isothermal contact constriction
temperature rise

u - dimensionless contact position

z ~ coordinate

Greek symbols

6n - solutions to Jl(én)=0

€ ~ dimensionless contact size

Xn - eigenvalues for Neumann solutions

¢ - general function in all Neumann solutions

y - dimensionless thermal constriction resistance
parameter

Subscripts

i -~ refers to a test point

it - refers to a Neumann solution

n - refers to a term in the infinite series of the
Neumann solutions

INTRODUCTION

In the past several investigators [1-7] have
examined the problem of the thermal constriction resist-
ance of a circular contact area on an insulated semi-
infinite, coaxial cylinder as shown in Fig. 1. This
situation is commonly called a thermal constriction
resistance flux tube.

It can be shown by symmetry arguments that for a
real interface between two contacting solids the cir-
cular contact area must be isothermal. Since the irea
outside the contact area on the top of the flux tube is
modelled as adiabatic, a mixed boundary value problem
results. In most real contact problems, usually based
on the theory of conforming rough surfaces [8], the
ratio of contact radius 'a' to flux tube radius 'b’,
€ = a/b, is small (0 < ¢ £ .2). In this range a
prescribed flux distribution proportional to
(l-(:‘/a)z)'ll2 will closely approximate the true
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Fig. 1 Circular contact on an insulated, semi-infinite,
coaxial cylinder

isothermal boundary conditior over the contact.

The problem can also be formulated in terms of
dual integral equations {9] which can then be solved
numerically [5] or approximately by assuming ¢ is small
[4]. An attempt to solve this problem numerically by
finite difference was also limited to small ¢ [7].

In this work the mixed boundary value problem will
be solved by linear superposition of two to four
different prescribed flux distributions using a linear
least squares criterion. There are two important goals
in this work. The first goal is to obtain accurate
values of the constriction resistance over the large
range of 0 < g < .9. These values are necessary for
models which describe the contact resistance between
rough, wavy surfaces [10] and are also applicable to
other analogous field problems such as electrical
current flow [6]. The second goal is to demonstrate the
versatility oY this technique which could be used to
solve mixed boundary value problems where other tech-~
niques are not readily applicable.

Problem Statement and Solutions for Various Flux
Distributions

Consider the steady conduction of heat through the
right cylinder shown in Fig. 1. The governing differ-
ential equation and boundary conditions are
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where q;(r) is some prescribed flux distribution which
is applied to the contact area.

a<r<b, z=0 —=0 (5)
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where Qo = Q/mbe ((”
and Q is the total heat flux entering the tube.

From consideration of (1), (2), (3), (6) and (7)
superposition of two solutions gives

.z ¢ -ApzZ
T(r,z) = D° -F Z Dn JO(an)e (8)
n=1
where 6n 2 Apb are the roots of
Jl(én) =0 (€))

The prescribed flux over the contact area is then
related to the temperature field by
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n=1
To evaluate the unknown coefficients D_, both
sides of (10) are multiplied by rJo(Amr) ang integrated
from r=0 to r=b.
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The first term on the right-hand side of (1l1) is
zero identically since both J;(Aub) and J1(0) are zero.
The second term of the right-hand side is zero when
Am ¥ Ap by the orthogonality property of Bessel func-
tions. Thus

b

®e 3 20 mdr = - [ 2L (6,00 4G r)a a
D_ X rJo(Anr)r - 5z r, roxn r Z(

n'n
[
whichoafter integrating the left-hand side [11]
becomes
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Note that conditions (4) and (5) require that

q.(r)
%5 (r,0) = - —JHZ—— for O<r=<a (14)
%% (r,0) = 0 for a<r<b (15)

For the constriction resistance of a flux tube
only the surface temperature over the contact area is
of immediate interest. Thus a dimensionless radial
distance, u = r/a, shall be used to give

, = Jo(fncu)xnaz fl
T(u) = no + T ; — e J qj(u)u Jo(&ncu)du (16)
n=l 857 Jo () 4

However the thermal constriction resistance of the
flux tube, defined as the average contact temperature
minus the average temperature in the z=0 plane divided
by the total heat flux in the tube, is the quantity
which will ultimately be determined. Since it can be
easily shown as in [1] that the averape temperature in
the z=0 plane is simply D,, then a constriction temp-
erature rise on the contact surface is simply .

Tc(u) = T(u) =- 30 or thus
o
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The applied flux distribution qj(u) will however
*) given in terms of some function of position gj(u)
and a linear scaling factor Cj such that

qj(u) = (18)

C, g.(u
J gJ )

Thus, if there are 'M' different flux distribu-
tions applied simultaneously to the contact area, the
constriction temperature rise on the contact will be
given by

kTC(u) M ©
— = 2 . 8§ e, F, (& 19
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where (5 eg,u) = 20 ; (20)
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In this work four different applied flux distribu=-
tions will be considered. The corresponding F. as
defined by (21) are given in Table 1 [11]. The first
flux distribution is often called the equivalent
isothermal because it gives a true isothermal contact
temperature on a half-space and a close approximation
for small ¢ = a/b. The second is the uniform flux
distribution which would gve a true isothermal contact
temperature if ¢ = 1 (although the constriction resist-
ance is zero for ¢ = 1). The third and fourth distri-
butions were added to help in obtaining accurate re-
sults for large ¢.

Superposition of Applied Flux Distributions by Linear
ast Squares Criterion

v If M of the previously described flux profiles are

linearly superposed, then together thev form a hybrid

flux distribution such that the constriction tempera-

ture rise on the contact, Eq. (19), can be written as

kT (u) M
—— = J . f.(c,u) (22)
je1 43
where £ (e,u) = 2 ¥ Fi(8,€8(5 ¢,u) (23)

n=]1
and ¢(8 e,u) is given by (20) and F. (8 ¢) is tabulated
. a j'n
in Table 1.

Since it is desired to combine the flux distribu-
tions in such a manner that the local constriction
temperature rise on the contact is uniform, then the Cj
will be determined such that

ch(u)
——— 3 T_ = const. (24)
a 8
Table 1. Function F; as defined in Eq. (21) for Four
Different glux Distributions
j gj(U) Fj(Sne)
1 (1_u2)—1/2 sin(dne)
2 1 Jl(éne)
2 2
u Jl(éne)ll—al(cne) ]+ (Z/Gne)Jo(Snc)
(1-'u2)l/2 [l/(éns)zl[sin(éne) - (éne) cos(éns)]

where Ty represents a specified constant constriction
temperature rise for the contact.

However it can be readily shown that if the con-
stants Cy are determined by a linear least squares
analysis|, then each Cj will be directly proportional to
Ts. Thus for convenience Tg is set to unity (or
Te(u) = a/k)., If 'N' collocation or test points,
are considered then the total error squared is

N

)
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j=1

By the method of linear least squares the unknown
constants Cj are chosen such that E is a minimum, or

(2=1, 2,...,M) (26)

This criterion creates a system of M simultaneous
linear equations of the form

M M N M M

jZl. ¢ igl 121 [fl(e,ui)fj(e.ui)] = zzl iglfl(e.ui) 27
or in matrix format

N N

izl fz(c'ui)fj(c.ui) Cj = iElfl(s.ui) (28)

Definition of Therrmal Constriction Resistance and
Selection of Discretization Points

By definition the thermal constriction resistance
for a flux tube is

Tc

Rc = (29)
where Tc is the averape constriction temperature rise
on the contact (= averape contact temperature rise
minus average temperature rise over the plane z=0), or

7 =l_[ T
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c c
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where A, = ra2 ig the total contact area.
Then for
1 N
T = & 7 1t (32)
c N iLl c i
all the A __ are equal at A _ = A /N and the u. are
ci ci c i
chosen as the center of equal area annuli. This tech-

nique insures that the least squares analysis will be
performed to give maximum accuracy in the calculation
of thermal constriction resistance.

The total flux N consists of the sum of the total
fluxes of each prescribed flux distribution, or

M
Q = 7§ o (33)
j=1

where it can easily be shown that for the four flux
profiles considered in this work

2 2

Q1 = 2 Clna . Q2 = Czﬂa
1 2 2 2
Q3 = 2 Cawa . 04 3 Cawa
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And thus the thermal constriction resistance is

(k'fc/a) (a/k)

(34)
2 1 2
1a" (20, + C, + 5C + 3C))
or by defining a dimensionless thermal constriction
resistance parameter
Y = bka R, (35)
and noting that kfc/a - Ts = 1, then
4
v = T (36)
m(2C0) + Cy + 304+ 3

where if fewer than all four flux distributions are
being combined, then the unused constant(s) C, should
be set to zero in Eq. (36). J

Presentation and Discussion of Results

As mentioned previously, one major goal of this
work is to obtain accurate results for the constriction
parameter over the complete range of 0 < ¢ < .9, To
achieve this goal with accuracy, up to four flux pro-
files and 35 test points were used to ensure the
validity of the results.

All computations were made on an IBM-PC using
double precision. MNote that after developing the
analytic work for each flux distribution, it is of
little consequence to either the computer programming
or execution time whether two, three or four different
flux distributions are combined.

To assemble the system of linear equations
described by (27) requires repeated calculations of the
roots of Jj(S,) = 0 and evaluations of the Bessel
functions Jo(+) and Jj(+). The roots are easily deter-
mined to 10 decimal accuracy by the Stokes' approxima-
tion [12]. The Bessel functions Jo(*) and Jy(+) are
evaluated to an absolute error less than 10-7 by
simple and efficient polynomial approximations [12].

Table 2 shows how closely the resultant calculated
temperatures are to the specified temperature of Tg =1
for combinations of two, three and four flux distribu-
tions. Note that for ¢ < .2 the first flux distribu-
tion f; alone will yield extremely uniform comntact

temperatures. Also when the number of test points ig,.
increased, the relative accuracy remains roughly as
seen in Table 2 for any particular combination of flux
distributions at any given ¢.

It must also be emphasized that the slight rela-~
tive errors in the calculated temperatures of Table 2
cause considerably lower relative errors in the sub-
sequent calculations of the dimensionless constriction
parameter. This results because the constriction
parameter represents an integrated value of the calcu-
lated temperature distribution and thus minor devia-
tions above and below the specified temperature tend to
have cancelling effects.

Figures 2, 3 and 4 show respectively for e = .5,
.7 and .9 how the optimised linear combination of the
four f; produces a virtually uniform resultant tempera-
ture distribution. Note that the plots shown of each
fj in Figures 2, 3 and 4 represent the form of the
temperature distribution which would result from that
particular prescribed flux distribution.
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Table 2. Resultant Temperature Profiles for Different ¢ and Number of Flux Profiles Used, M.
€= .3 €= .5 e=.7 e = .9
u,

. =2 M=3 M=2 M=3 M=t M=2 M=3 M=4 =3 M=4
0.1291 0.9994 1.0001 0.9950 1.0005 0.9999 0.9691 1.0041 1.0001 1.0816 0.9933
0.3117 0.9996 1.0000 0.9970 1.0002 1.0000 0.9804 1.0011 1.0000 1.0219 1.0002
0.4062 0.9998 1.0000 0.9983 0.9999 1.0000 0.9887 0.9992 0.9999 0.9847 1.0037
0.4818 0.9999 1.0000 0.9997 0.9997 1.0001 0.9969 0.9982 1.0000 0.9591 1.0050
0.5469 0.9998 1.0000 1.0007 0.9996 1.0001 1.0042 0.9974 0.9999 0.9442 1.0039
0.6050 1.0000 1.0000 1.0015 0.9996 1.0000 1.0100 0.9974 1.0000 0.9413 1.0031
0.6578 1.0001 0.9999 1.0023 0.9997 1.0001 1.0144 0.9978 1.0000 0.9468 0.9996
0.7067 1.0004 0.9999 1.0029 0.9998 1.0000 1.0188 0.9986 1.0000 0.9623 0.9967
0.7525 1.0005 1.0000 1.0034 0.9999 0.9998 1.0198 0.9997 1.0000 0.9874 0.9965
0.7956 1.0005 1.0000 1.0053 1.0001 1.0002 1.0201 1.0010 1.0000 1.0155 0.9946
0.8364 1.0008 1.0000 1.0026 1.0003 0.9998 1.0185 1.0028 1.0005 1.0457 0.9952
0.8754 1.0009 1.0000 1.0020 1.0004 1.0002 1.0128 1.0032 0.9999 1.0729 1.0006
0.9127 1.0006 1.0001 1.0001 1.0006 0.9998 1.0005 1.0030 0.9995 1.0775 1.0026
0.9485 1.0005 1.0001 0.9970 1.0001 1.0001 0.9825 1.0018 1.0002 1.0423 1.0
0.9831 0.9975 0.9998 0.9935 0.9993 0.9998 0.9576 0.9946 1.0000 0.8623 0.9

Note: Ideal result would be T = Tgq = 1.0000.
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Figure 5 shows the hybrid flux distributions
which result from the linear combination of the four
flux distributions for ¢ = .5, .7 and .9. Note that
the results are plotted as a dimensionless quantity
relative to the centerline (u=0) flux. The hybrid flux
distribution falls between the bounds of the equivalent
isothermal flux distribution and the uniform flux
distribution. As expected, for small € the hybrid flux
distribution resembles the equivalent isothermal and as
€ becomes close to unity, the hybrid flux distribution
tends toward a uniform value.

Table 3 shows the slight "convergence" of the con-
striction resistance as the number of test points is
increased. Since the computer execution time is
directly proportional to the number of test points, it
is advantageous to use as few points as necessary.

Table 4 1s a comparison of the constriction para-
meter calculated by the technique of this paper with
those of other researchers. The result of Roess is
really just the use of the first flux distribution, the
equivalent isothermal. Smythe's results reflect an
attempt to correlate the resultant resistances of the
first two flux distributions presented in this work.
Gibson's solution is the true mixed boundary problem
solved by using a series solution of dual integral
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Table 3. Constriction Parameter, ¥, Using all Four

Flux Profiles for all with Different
Numbers of Test Points.
|l 03 04 0.5 0.6 0.7 0.8 0.9

N

15 .5866 .4585 .3396 .2324 .14046 .0672 .0183

20 .5866 .4586 .3396 .2324 .1403 .0672 .0183

25 .5865 .4586 .3396 .2324 .1403 .0672 .0183

35 .5865 .4586 .3396 .2324 .1403 .0672 .0183
Table 4. Comparison of Constriction Parameter ¢

as Calculated by Four Different Techniques
Researcher €=0.3 €=0.4 €=0.5 ¢=0.6 €=0.7 £=0.8
Negus,

Yovanovich .5865 .4586 .3396 .2324 .1403 .0672
Roess [2] .5853 .4558 .3342 .,2232 .1262 .0483
Smythe [6] .5865 .4588 .3408 .2350 .1l444 .0723
Gibson [4] .5865 .4586 .3398 .2328 .1409 .0680

equations by assuming that ¢ 1s small. Despite this
limitacion there is excellent agreement with the
accurate results presented here.

Figure 6 shows graphically the relationship be-
tween the dimensionless thermal constriction parameter,
Yy = 4kaRq, and the relative flux tube contact radius,
€ = a/b. :

Correlation of Results

Since the series solution of Gibson gave excellent
agreement with the results presented here, a corre-
lation was made using basically the same functional
form. The resultant correlation for the dimensionless
thermal constriction parameter is
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