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The capacitance or charges of two arbitrary conductors are normally com-
puted by numerical methods. There are a number of well known methods,
e.g. the point matched boundary integral method [1,2], the charge simula-
tion method [3] and the finite element method [4]. All these numerical
methods frequently require substantial computer time and programming
effort. It would be desirable to have some simple method in place of these
numerical methods and still give acceptable errors of say less than 5 or 10%.

There is, in principle, a simple method to calculate the charges and capaci-
tance of a two conductor system. The method is based on the elastance matrix
by Smythe [5], with elastance defined as the reciprocal of capacitance.
Through the inversion of a 2X 2 elastance matrix, Smythe obtained the
capacitance matrix and, subsequently, simple formulas (i.e. eqn. (2) to (3))
for the charge and capacitance calculations of the two conductors.

The simplicity of these “two conductor” formulas actually depends on the
simplicity of obtaining the capacitance of each conductor in isolation (i.e.
eqn. (1a) and (1b)). Recently a simple ‘‘(square) root of area” formula of
such capacitance for arbitrarily shaped conductors has been derived [6]. As
a result the simplicity of these formulas has been extended, from a few simple
conductor shapes (such as spheres or prolate spheroids) to a vast family of
arbitrarily shaped conductors (such as cubes, polygon plates or even short
pipes).

In addition to being simple, the accuracy of the formulas is high. In fact
the accuracy is so high that the restriction of ‘‘distant conductors” from
Smythe [5] can be substantially relaxed or even deleted. For example, with
two conductors of equal potential, the two conductors can touch each other
and frequently the error in capacitance is still less than 5%.

When two capacitances touch, they can be regarded as being fused into one
single complex conductor. Therefore the simple ‘“two-conductor of equal
potential’ formula of Smuthe can also be used for some complex shaped
conductors (such as a notched rectangular plate, or a small cube on top of
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a large cube). Comparisons of the single capacitances from the simple “two

conductor” formula are made not only with those from the boundary integral

method, but also with those from the simple ‘‘root of area’ formula of [6].
In the conclusions, limitations of the simple formulas are discussed.

1. The elastance matrix and its capacitance formulas

The elastance matrix equation of Smythe [5] for two conductors with
potentials V and charges @ is:

Vl z§-ll El Ql
[Vz] =[su sz:][Qz] @
where the self elastances are
En = 1/C, (1a)
£ = 1/C, (1b)
and the mptual elastances are approximately

1
= = —— ; 1c
E12 = &n dneod (1c)
C, is the capacitance of conductor 1 in isolation, similar for C,, and d is the
distance between the centroids of the two conductors.
The inversion of the elastance matrix equation gives the capacitance matrix
equation:

CrCe CorYT
el -ler e ]l5] @
where
ey =l

c - ¢,C,
c,, = —Cal

c: -C,C,

c.C

Ciy = Cyy = — C‘,m’
and
Cm = 4meyd, | (3)

the inverse of mutual elastance in (1c¢).
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Equation (2) reduces to a simpler form when the two conductors have the
same isolation capacitance, i.e. C; = C,. Then if the two conductors are of
equal potentials their total capacitance is

_2C,Cq

= 4
vk 4

if the two conductors are of opposite potentials the capacitance between them
is

CiCn

T 2(Ca-Cy) ©

0

2. The capacitance of a conductor in isolation

Recently Chow and Yovanovich [6] have proved analytically and numerical-
ly that the capacitance of a convex conductor in isolation is given by the
“roots of area’ formula

C = Cs €9 V 47S (6)

where S is the surface area of the conductor and ¢ is called the ‘“‘shape factor”
of the conductor.

Before discussing the significance of ¢, it is to be noted that a plate is con-
sidered to be a compressed convex body; therefore its area S is equal to twice
the surface area of one side of the plate. Also it is to be noted that if a con-
cave conductor is enveloped by a minimum convex conductor, then the
capacitance of the minimum convex conductor approximates that of the
concave conductor [6].

Some values of ¢; for different convex body have been tabulated in [6].
Nevertheless the significance of ¢ lies in the fact that it is a very slowly
changing value with shape. For most commonly encountered bodies, c; is
found to range from 0.9 to 1.1 with ¢; = 1 for a sphere [6]. Therefore the
unknown ¢; of a conductor can be approximated by that of a similar conduc-
tor. For example, a square and a circular disc have the same shape factor of
ce = 0.90. Also with the same length to width ratio of 4.0, a finite cylinder
and a prolate spheroid have similar shape factors of ¢ = 1.01 to 1.04 respec-
tively.

3. The example of two identical spheres

We sh?ll begin with a simple example of the capacitance of two identical
conducting spheres of radius r, and a centre to centre separation of d as shown
in Fig. 1. In this case

Cl = 02 = 471'60‘"0 ) . (7)
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Fig. 1. Two identical conducting spheres.

and

Cm = 4neyd

(3)

with r, = 1 m. The capacitance C, and C, of equal and opposite potentials
are calculated from (4) and (5) and plotted in Fig. 2.
Figure 2 shows these results agree very well with those from the exact solu-
tions with 100 images from Smythe [7]. In fact, for the equal potential case
the agreement is still within 3% when the two spheres touch.
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Fig. 2. The capacitances of equal and opposite potentials on the two spheres in Fig, 1,

vs. geparation.
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4. Example of two identical conducting square plates

The approximation in (1c) gives the mutual elastance £,, as a function of
centre separation and not a function of orientations of general conducting
bodies with respect to each other. This implies that the true mutual elastance
£,, (and therefore the capacitances of the two bodies with equal and opposite
potentials) is only weakly dependent on the orientations of the conducting
bodies.

An example of two identical conducting square plates is to demonstrate
this observation. As shown in Fig. 3, one conducting square is made to rotate
around but parallel to the other conducting square. The capacitances of equal
and opposite potentials are then computed by the point-matching moment
method [1] and are plotted in Fig. 4. To ensure a two significant digit accuracy,
64 match points in each square plate are used in the method.
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Flg 3. Two identical conducting plates.
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Fig. 4. The capacitances of equal and opposite potentials on the two square plates in
Fig. 3, vs. orientation. ‘
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In addition to the moment method calculation, the reduced formulas (4)
and (5) of C, and C, are also calculated using the mutual elastance in (1c)
and the self elastance in (1a), equalling the reciprocal of the capacitance C;
of an isolated square plate. Based on Chow and Yovanovich [6], the capaci-
tance of an isolated square plate of sides 26 may be taken as

Cl = €9 Cf\/4ﬂ(2b)22 (8)

with ¢; = 0.904.

When the point-match results and these from (4) and (5) are computed in
Fig. 4, one sees that the capacitances are indeed only weakly dependent on
the orientation of the square plates, and the constant capacitances C, and C,
given by (4) and (5) do closely approximate the point-matched values of
capacitances for all orientations of square plate separations.

Orientations can also mean the rotations of the bodies with respect to
their own centroids. Based on the same reason as the above example, it is
expected that the capacitances are also weakly dependent on such type of
orientations.

5. Example of a square and a rectangular conducting plate

The two examples before all have two identical conducting bodies. In this
example as shown in Fig. 5 the two bodies are different, that is: a conducting
square plate and a conducting rectangular plate. Therefore, instead of (4) and
(5) the general formula (1) has to be used. When the two plates have different
areas the capacitance of opposite potentials is difficult to define. Therefore,
only the equal potential case is studied.

2 m Sq. 2xlm
rectangle
Sl

Fig. 5. A square and a rectangular conducting plate.

The capacitance of the isolated square plate has been given by (8). Based
on Chow and Yovanovich [6], the capacitance of the isolated rectangular
plate of side ratio of 2 to 1 in Fig. 5 can be taken to be

C, = €ociV/4m26%2 (9)
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where ¢; = 0.931 and 2b is the long side dimension. Now we approximate the
self elastance ¢£,; = 1/C,, and &,, = 1/C, and the mutual elastance ¢,, by (1c).
When the elastances are substituted in (1), the capacitance (vs. separation) is
calculated.

The capacitance from the calculation is plotted in Fig. 6. When compared
with that from the point-matching method, the agreement is still very good.
In fact it is observed when the rectangular plate touches the square plate, the
difference is still only 3% between the two capacitances.

On the other hand, the difference in complexity between the two methods
is striking, While (1) is quite simple, to ensure a two significant digit accuracy
the point-matching method has required 96 equally spaced matching-points,
64 on the square and 32 on the rectangle.
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Fig. 6. The capacitance of equal potentials on the square and rectangular conducting plates
in Fig. 5, vs. separation.

6. Complex simple conductors by fusing two conductors

When two conductors of the same potential touch they can be considered
to be fused into one complex conductor. However, despite such close
separation, the capacitances calculated from the two conductor formula from
(4) or from its more general form (1) are still very accurate when compared
with those from the boundary integral method, in Table 1. Details of the
geometries in Table 1 are given in Fig. 7.

It may be noted that when the conductors fuse, the fused surface areas of
the two conductors are not considered to disappear in the calculation of the
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TABLE 1

Examples of conductors formed by fusing two parts. Capacitance in pF (with errors from
II in parenthesis)

I II III
Two conduc- Numerical
tor formula method C=cse,n/47S  Approx,
from eqns. results* from eqn. (6) c;g value and
(1),(3)and (6) (pF) (pF) its source
(pF)
Two equal spheres 148.4 (-4%) 154.8 [7] 158.3 (+2%) ¢¢=1.006.
(Figs. 7a and 1) (from a 2 :1 prolate
spheroid [6])
A square and a 117.3 (+1%) 116.5 109.0 (-4%) ¢§=0.928
rectangle plate (from a 2 :1 elliptic
(Figs. 7b and 5) plate [6,8])
Half annulus 101.1 (+6%) 95.0 [1] 103.8 (+9%) ¢ =0.933
(fusing of two (from a half
quarter annulus) circular disc [6, 8])
(Fig. 7¢)
A small cube on 75.6 (—1%) 76.2 [9] 79.5 (+4%) cg =0.953
a large cube (from a cube [6])
(Fig. 7d)
Two squares fused 53.1 (-4%) 55.2 [9] 62.8 (+14%) c¢ =0.953
at right angle (from a cube [6])
(Fig. 7e)
Four square plates 67.4 (-4%) 70.1 [9] 73.3 (+5%) (from a cube [6])

forming a hollow
pipe (Fig. 7f)

*¥Qver 50 evenly spaced match-points are used in each numerical computation.

self elastance of each conductor. An example of this fusing is in Fig. 7d.

It may also be pointed out that the last complex conductor in Table 1 is
a hollow pipe formed by four square plates. This means that the 2 X2 matrix
in (1) has to be expanded into a 4 X 4 matrix. Nevertheless, because of the
four-fold symmetry, the 4 X 4 matrix is reducible to 2 X 2. The details of the
4 X 4 matrix and its reduction are very simple. Therefore they are not derived
here.

A complex conductor resulted from the fusing of two parts is usually a
concave conductor as shown in the examples of Fig. 7. However, as discussed
in Section 2.3, with a modification in the area S the ‘“root of area” formula
of (6) still applies. As parts of (1) and (4) come from (6), they cannot be as
simple as (6). Therefore results from (6) are also included in Table I for com-
parison. For eqn. (6) in Table I, the ¢; are approximated from similar con-
ductors. The names of the similar conductors are listed.
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Fig. 7. Complex single conductors by fusing two parts. The ¢; value of each part is marked.

Table 1 shows that, with only slightly more complexity, (1) and (4)
generally give less error than that from (6).

The two conductors in Table I are fused and the error is still quite small.
It is evident therefore if the two conductors were separated, (1) and (4)
would give even more accurate results.

7. Conclusions

The first three examples in Figs. 2, 4 and 6 show that the ‘“two conductor”
formulas of (1), (4) and (5) are accurate from the infinite separation to very
short separations. In the equal potential case of (1) or (4), the two conduc-
tors can actually touch and the error is only less than 5%.

When two conductors of the same potential touch, they can be considered
to be fused into one complex conductor. Table 1 shows that in many cases
the errors are indeed less than 5%.

Table 1 also shows that the application of the “two conductors” formula
of (1) to one complex conductor usually gives a better capacitance than the
“root of area’’ equation of (6). The ‘‘two conductor” formula (1) however
makes use of (6), therefore is slightly more complex than (6) although (1) is
still very simple. |

There is a situation nevertheless where the “two conductor’’ formula does
not give good results, regardless whether or not the two conductors are of
equal or opposite potentials. This is the situation in which the mutual
elastance of (1c) is larger than a half of the self elastance of (1a) and (1b).
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This large mutual elastance invariably means that the separation between the
centroids of the two conductors is smaller than the largest dimension of the
conductors. Examples of this situation are the parallel plate capacitor and a
sharply folded plate with the angle between the two parts of the plate at or
less than the 90° in Fig. 7e. For this situation, a different approximate
formula would have to be developed.
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