The shape factor of the capacitance of a conductor
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This paper shows, analytically and numerically, that the capacitance is a slowly changing
function of the conductor shape. This slow change can be monitored by a “‘shape factor” which is
independent of the conductor size. Because of this slow change, from the tabulation of the shape
factor, the capacitance of many conductors of arbitrary sizes and shapes with both convex and
concave surfaces, can be estimated to an error of 5% or less.

PACS numbers: 41.10.Dq

I. INTRODUCTION

The capacitance of many arbitrarily shaped conducting
bodies have to be computed numerically through the point-
matched boundary integral methods,'” simulated charge
methods (optimized® or nonoptimized*), or the finite element
method.’ Normally the full computation has to be carried
out in these numerical methods, each time the shape of the
conductor body is changed by even a small amount.

This paper corrects this situation. Based on the inequal-
ity of Payne and Weinbeger,® it proves that the capacitance
is, in fact, a slowly changing function of the conductor shape
for a constant conductor surface area. Using the variational
formulation’ it also shows that the capacitance is propor-
tional to the square root of the conductor surface area for a
constant conductor shape. From these two properties, a ca-
pacitance shape factor is defined so that the capacitance of
any conducting body is simply proportional to the product
of the slow-changing factor and the square root of the sur-
face area.

The shape factor of capacitance of a sphere is defined as
unity. A series of the shape factor of different conductor
shapes are tabulated to show that they normally do not
change beyond + 10% from unity. They also show that the
shape factor between similar conductors, such as a prolate
and a right cylinder of the same length-to-width ratio, are

observed to be within 5% of each other. This means that if -

the capacitance of a conductor is known, the capacitance of a
whole family of similar conductors is also known within a
5% error.

One can derive a slow-changing shape factor not only
for the convex-shaped conductors, such as the above, but

also for conductors with concave surfaces. For the latter

case, the effective surface area of the concave conductor is
not the actual surface area, but the surface area of the small-
est convex conductor that can circumscribe the concave con-
ductor. The justification and examples of the effective area
are included in this paper.

Ii. THE SLOWLY CHANGING CAPACITANCE OF
CONDUCTORS OF DIFFERENT SHAPES BUT OF THE
SAME SURFACE AREA

Assume that there is a conductor S, of boundary poten-
tial V,, assume also that the potential field @, around the
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conductor and its capacitance C, are known exactly. As a
simple illustration, let the conductor be a sphere as shown in
Fig. 1(a). The potential field of a sphere can be considered to
come from an equivalent point change at the center of the
sphere. As a result the potential field @, of the sphere need
not stop at the boundary of the sphere but continues into the
interior of the sphere. It has been demonstrated that this
concept of equivalent interior charges and continuation of
potential field across the conductor boundary can be applied
to not only the sphere but many other conductor shapes in-
cluding bodies with edges.®

Assume now that there is a new conductor S, of the
same boundary potential ¥, and the same total surface area.
Having the same total area, the surface of the new conductor
would normally intercept that of the original conductor. For
illustration, let the new conductor be a cube and intercepts
the original sphere as shown in Fig. 1{b).

Let the exact but unknown capacitance of the new con-
ductor be C, (= C, + AC). Now because of the concept of
continuation of potential across the conducting boundary,
even with the surface interceptions as in Fig. 1(b), we can
allow the exact potential distribution @, of the original con-
ductor to be the approximate potential distribution of the
new conductor. Then the capacitance inequality of Payne
and Weinberger® can be written as

(ACP<elC, HS R (“;0 —‘l)zds, 1)

where

©odry )
hy=r —L, 2
1 r'dn, (2)

(a) . (b)

FIG. 1. A sphere and its intercepting cube of the same surface area. (a) A
sphere; (b) The intercepting cube.
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the projected distance from the origin inside S| to a particu-
lar point on the surface S,. The surface integral in Eq. (1)
represents the & ' weighted squared potential error (nor-
malized by V) over S,. '

Equation (1) can be written as

@<[eflrrG-Yel” o

As seen in Fig. 1(b), there are lines where the new conductor
intercepts the original conductor. Along these lines the po-
tential error @,/ ¥V, — 1 in Eq. (3) is zero. Hence it is easy to
see that the integral of the square of the weighted potential
error at the right-hand side of Eq. (3) is usually small. This
means that the ratio AC /C, at the left-hand side of Eq. (3) is
also small, or that AC is only a slowly changing function of
the shape of the conductor.

It may be noted that the property of slow-changing ca-
pacitance is ensured by the presence of interceptions of the
new and the original conducting surfaces. The interceptions
of the conducting surfaces are usually obtained by choosing
the total surface areas of the two conductors to be the same.
The interceptions are ensured when the two conductors are
convex.

HI. THE CAPACITANCE OF CONDUCTORS OF
DIFFERENT SURFACE AREAS AND THE
CAPACITANCE SHAPE FACTOR

The last section considered conductors of the same total
surface area. If a new conductor is of different shape and
different total area from the original conductor of known
capaciatance, then the change from the original conductor
to the new conductor can be considered in two steps. The
first step is to change the shape while keeping the area con-
stant, as seen from the change of “a sphere to a cube” in Fig.
1. The second step is to change the area while keeping the
shape similar, as the change from the cube to a bigger cube.
We shall consider this latter aspect in this section.

For a known charge distribution o, on the surface S, of
a conductor, the capacitance is’ .

e
el znels

where r, is the distance from the field point to the source
point, on the surface of the conductor. If the shape of the
conductor remains similar but its linear dimensions are in-
creased by a factor a, then the charge distribution o;, on the
new surface S, can remain the same, but the new distance is
r, = a r, and the new area is S; = a” S,. As a result, one can
easily see from Eq. (4) that the new capacitance C, is related
to the original C, by the ratio

ci= 5 (2). | 5
VS, , |

Equation (5) is exact if the shapes of the conductors
remain similar. However, Eq. (5) is still a good approxima-
tion even if the shapes of the conductors are changed, based
on the fact that the capacitance is a slowly changing function

4)

8471 J. Appl. Phys. Vol. 53, No. 12, December 1982

of the shape.
It will be desirable to get a dimensionless capacitive
shape factor to monitor the slowly changing capacitance

with respect to the shape. The normalized parameter C /- S
in Eq. (5) is not dimensionless, although it is independent of
the conductor area. The parameter C /4/S can be made truly
dimensionless by a division by K¢, where K is a constant.
Based on this we may define the shape factor as
=—t |
T eSamrT
where the constant K has been chosen to be (47)'/% This
constant is chosen so that the shape factor is equal to unity
when the conductor is a sphere.
With ¢, known for a conductor shape, the capacitance
is simply

C = ce(dmS )2, (7)

From the tables in the next two sections we shall see that ¢,
can have values both larger and smaller than unity.

The values of ¢, tabulated could have errors up to 3%.
The details of these errors, however, are incomplete and dif-
ficult to get as many of the ¢, values are gathered from the
capacitance computed numerically by different’ workers.
Therefore they are not included in the tables.

(6)

IV. THE SHAPE FACTOR OF CONVEX CONDUCTORS

The sphere is the simplest convex shape with a shape
factor of unity. Simple compressing and elongation of the
sphere give, respectively, the oblate and prolate spheroids.
Table I gives the shape factor as a function of a chosen aspect
ratio ¥ (i.e., length of the axis of symmetry to the cross-sec-
tion diameter) of the spheroids. The table shows that the
shape factor ranges only from 0.90 (for ¥ = 0.0, a circular -
disk) to 1.14 (for ¥ = 8.0, a long prolate spheroid) over a vast
change in shape. Thus, this table shows two properties: (i) the
shape factor is a slowly changing facator of the shape, and (ii)
in the process of elongation (i.e., ¥ increasing) the shape fac-
tor increases.

‘TABLEL Shape factors ¢, of spheroids.

Oblate spheroid Prolate spheroid

— | /!

T A

y=L/D ¢ vy=L/D ¢
1* . 1.000 12 1.000
0.8 1.000 2 1.006
0.6 0.998 3 1.023
0.4 ‘ 0.991 4 1.045
0.2 0.968 5 1.069
0.0° 0.900 6 1.093

®a sphere g 111(7)

ba circular disk :

¢, is calculated from the formula for ellipsoid in Ref. 9.
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TABLE II. Shape factors of three elongated bodies.

TABLE IV. Comparison of capacitance of hollow square pipes and solid
prism of the same dimensions.

Cylinder Ellipt. disk Rect. disk
( i )‘T ( ) ) T
‘ D 2] D
400 4 4
b i e
7’ =£ c a ¢ b ¢
D s i ¢
1 0.922 0.900* 0.904**
2 0.950 0.928 0.931
3 0.983 0.969 0.970
4 1.013 1.010 1.002
5 1.041 1.048 *a circular disk
6 1.067 1.085 **a square disk
7 1.091 1.115
8 1.114 1.151

__2¢, is taken from Ref. 8 with absolute error bounds of + 3%.
®¢, is calculated from the formula of ellipsoid in Ref. 9.
“¢, is from point matching method with square subareas, with 8 subareas
across D.

These two properties are observed not only for the
spheroids but also for other structures listed in Table 11 and
II1. Table II shows the shape factor of the right cylinders,
elliptical disks, and rectangular plates. The chosen aspect
ratios of these three structures are defined in Table II.

Table II1 shows that shape factor of disks of arbitrary
shapes and their equivalent elliptical disks {of the same as-
pect ratio). A comparison of Table I-III shows that since the
shape factor is a slowly changing function, the shape factor

L Hollow pipe Percentage Prism
y = 7 C,(pF) C, from C; C(pF) | ¢
1 70.1 —4.4% 73.3 0.953*
2 92.8 —2.7% 95.4 0.961
3 112.5 —2.0% 114.8 0.977
4 130.5 —1.7% 132.7 0.996
D=1m
Hollow pipe
{prism with
end plates
removed)

All capacitances are caiculated from the point matching method, with 10
square subareas across D.

2 At ¥ = 1 the solid prism is a cube. The ¢, obtained by the point matching
here happens to agree to the third significant figure with that calculated
from Ref. 8. The ¢, from Ref. 8 has absolute error bounds of + 0.9%.

of an arbitrarily shaped but convex conductor can be ap-
proximated by the factor of an ellipsoid of the same aspect
ratio. )

In an arbitrarily shaped conductor the definition of the
aspect ratio is frequently a bit arbitrary. Such arbitrariness is
not important, however, since the shape factor is a slowly
changing function of the shape.

TABLE IIL Comparison of shape factors or arbitrary disks and elliptical disks of similar aspect ratio 7.

. a b
Arbitrary Disks ce Elliptical Disks Ce

0.928 Q 0.928

'2x 1 diamond ) Yy =2
D 0.918 0.912

a quadrant . . y =/2
O 0.897 0.900

a hexagon y=1
Q 0.933 © 0.928

half circle ‘ ¥y =2

“ All ¢, of arbitrary disks are obtained from Ref. 10. .
® All ¢, of elliptical disks are calculated from the formula in Ref. 9.
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V. THE SHAPE FACTOR OF CONDUCTORS WITH
CONCAVE SURFACES

We begin this section by comparing a hollow square
pipe (a concave conductor) to a solid prism (a convex conduc-
tor) of the same dimensions as shown in Table IV.

Let both the prism and the hollow pipe be charged to a

potential of V. Let @, be the exact potential distribution .

around the hollow pipe. Now let @, also be the approximate
potential distribution around the solid prism. Since the side
plates of the prism are the same as those of the hollow pipe
there is no boundary potential error on the side plates of the
prism due to the approximation of @, If the length L of the
prism is longer than the width D, we observe that (i) on the
end plates of the prism @, still approximates V; [i.e., (®y/
V., — 1)? is a small number], and (ii) the end plate area is a
small area out of the surface area of the prism. Based on these

TABLE Va. Concave circumscribing structures and-similar structure with known shape factor.

two observations we see in Eq. (3) that the ratio AC /C, can
only be a small number. This means that the difference AC'is
small between the capacitances C, and C,, respectively, of
the solid prism and the hollow pipe of the same dimensions.

The solid prism can be considered to be the smallest of a
convex conductor that can circumscribe the hollow square
pipe. Therefore, with a little thought, on other similar cases,
we can say in general that the capacitance of a conductor
with concave surfaces can be approximated by the capaci-
tance of a smallest convex conductor that can circumscribe
the concave conductor.

As an example, Table IV compares the capacitance of a
series of hollow square pipes to that of the circumscribing
convex conductors of solid prism. One expects that the ca-
pacitance of a long pipe, say, the aspect ratio of ¥ = 4, is close
to that of the circumscribing long prism. However, one sees
in Table IV that even for a short pipe of ¥ = 1, the capaci-

with known surface -
. area and unknown vy

o

Structure

) : (11) (111)
Circumscribing
Concave structure to (I) Structure with

similar y as (II)
but known ¢

PP

folded sq. plate right A prism

Y=v2
square prism

4am l ' 4m
‘half annulus half circle

same
half circle

1..5m T'&'i | ‘ e
D) _

[ 2m

thick circular
disk
~ (x-section shown)

Toroid with
elliptic x-section
(x~section shown)

ob. spheroid
Yy = 0.36

0.5 m cube on
1 m cube

~a trapezohedron
on cube

cube
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TABLE Vb. Parameters taken from the structures in Table Va to calculate and compare the approximated capacitances C, of the concave conducting

structures of column (I).

I (I (IIT) Approximate capcitance
Capacitance Surface area Shape C, =cepl4aS)"” Percentage
C, of (I) S of (II) ¢, of (III) (pF) C, from C,
{pF) {sgm)}
a 42.1* 1.96 0.957¢ 42.1 0.0%
b 95.0% 12.57 0.9339 103.8 — 8.5%
c 189.5% 38.7 0.986° 192.5 —1.6%
7.06 0.953" 79.5 —4.2%

d 76.2%

®C, is calculated by point matching method using approximately 10 matching points per side of plate.

Y C, is taken from Ref. 10,

¢, is taken from Table IV.

9 ¢, is taken from Table IIL

¢, is calculated from the formula for ellipsoid in Ref. 9.
¢, is taken from Table IV.

8, is taken from Ref. 11.

tance is only 5% from that of the circumscribing prism,
which is a cube. v

Tables V(a) and V(b) compare the capacitance of other
concave conductors to that of the circumscribing convex
conductors. Column I gives [in Table V{a)] the shape of the
conductor and [in Table V(b)] the numerically calculated
capacitance. Similarly, column II gives the circumscribing
conductors and their surface areas.

Most of the circumscribing convex conductors listed in
column IT do not have known shape factor, therefore column
III gives the closet convex conductors with the known shape
factor. The approximated capacitances C, are then calculat-
ed from Eq. (7) using the areas in column II and the shape
factor ¢, for column IIL. One sees that the approximate capa-
citances resulted are generally accurate.

VI. DISCUSSION

Both the theoretical proof and the large number of ex-
amples from Tables I-V show that the shape factor of ca-
pacitance is indeed a slowly changing value with respect to
the change in shape. With the shape factor of the sphere
normalized to unity, the examples show that the shape factor
ranges from a minimum of 0.9 of a flat circular disk to 1.15 of
a long elliptical plate of aspect ratio of 8. As the aspect ratio
gets still bigger, the shape factor does approach infinity.
However, one can show, based on the approximation to the
capacitance of an ellipsoid,’ that the shape factor is very
slowly changing with y, the aspect ratio. That is,
¢, = [(2y)"/*/In(4y)] for ¥ > 5 with error <1%.

For convex conductors the minimum of the shape fac-
tor seems to be at 0.9 for a circular disk. Table III gives the
shape factor of the hexagonal disk at 0.897. As this number is
only 0.3% from 0.9, this may be only a numerical error. As
pointed out at the end of Sec. 111, the numerical errors may
be up to 3%.

The shape factor is not defined for a conductor with
concave surfaces. However, one can always circumscribe the
concave conductor with a convex conductor. The shape fac-
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tor of the convex conductor is defined. Using the shape fac-
tor and the surface area of the convex conductor, a capaci-
tance can be calculated from Eq. (7). The capacitance of the
concave conductor is normally slightly lower than this cal-
culated value. Exceptions to this rule are concave bodies, of
which the smallest circumscribing body still encounters
large potential error on integrating over the circumscribing
surfacein Eq. (3). Some of these bodies are the half annulus of
Tables V(a) and V{b), a square pipe of Table IV but withy < 1
or, similarly, a toroid with large center hole.

The shape factor of a convex conductor, either the cir-
cumscribing one or the original one, may not be known.
However, since the shape factor is a slowly changing value
with the shape, the known shape factor of a similar convex
conductor can be used. Tables III and V show that the errors
involved are usually less than 5%.

Since the shape factor is a slowly changing value, Tables
I-V indicate that even if the shape factor is taken to be unity
(i.e., that of a simple sphere) instead of the values tabulated,
the capacitance calculated from Eq. (7) normally has an er-
ror not larger than 10%.
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