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Thermal Resistance of a Convectively Cooled Plate
with Nonuniform Applied Flux

G.E. Schneider* and M.M. Yovanovich?
University of Waterloo, Waterloo, Ontario, Canada
and
R.L.D. Canet
National Research Council, Ottawa, Ontario, Canada

Two-dimensional steady conduction within a plate of rectangular cross section is considered. One of the surfaces
is convectively coupled to a uniform environment temperature while the opposite face is subjected to a nonzero
flux distribution over a portion of its boundary. An analytical solution is presented for a general flux
distribution and three specific cases are solved. The solution depends upon the Biot modulus, the plate thickness,
and the extent and character of the flux distribution. Graphical results are presented for the thermal constriction
resistance over the range of parameters of practical interest.

Nomenclature
a =width of contact in typical cell
b =width of the typical cell for analysis
Bi = Biot modulus=hb/k
c =thickness of typical cell
C,,C,,...C, =constants, defined in text

F = function dependent upon flux distribution

h =heat-transfer coefficient

k = thermal conductivity

L =length of typical cell normal to cross section

n,m =integers

q =heat flux

490 =constant in heat flux distribution

(0] =total heat flow )

R =thermal resistance= (T, - T,)/Q

R* =nondimensional resistance = RkL

R? =nondimensional constriction resistance
=temperature

™ =nondimensional temperature= kL (T—T;)/Q

Tc = average contact area temperature

T, =fluid temperature

u =nondimensional coordinate = x/a

=

Y = Cartesian coordinates

= nondimensional thickness=c¢/b

= nondimensional contact width=a/b
= nondimensional coordinate=y/b

= eigenvalue of analytical solution
=parameter in flux distribution
=nondimensional coordinate=x/b

= function, defined in text
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Introduction
N many engineering situations, a thermal conductor
convectively cooled on one face may be subject to a
nonuniform heat flux over its opposite face. In particular, this
nonuniform flux distribution may be prescribed over only a
portion of the surface, with the adjacent surface area
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remaining essentially adiabatic for thermal analysis purposes.
This problem is examined in this work for an arbitrary flux
distribution and for the case of steady two-dimensional heat
transfer.

The analysis presented in this work will find important
application to the design and analysis of solar collectors and
collector plates in both the design of solar collectors and in the
evaluation of experimental facilities utilized to estimate
collector losses due to free convection within the collector.
The collector plate is frequently constructed of a thermal
conductor having evenly spaced coolant tubes secured to its
lower surface. A second important application of this work is
to the cooling of banks of electronic circuitry as can be found
where extensive use is made of integrated circuit (IC) devices.
In order to maintain the temperature of the electronic cir-
cuitry below its maximum reliable operating temperature, a
knowledge of the thermal resistance of the mounting plate is
required.

Restricting the analysis to the case of evenly spaced tubes or
IC banks in the aforementioned examples, a single typical cell
can be extracted for analysis purposes. This typical cell is
delineated by the planes of thermal symmetry existing at the
center of the flux distribution and at the midpoint between
neighboring tubes or IC banks. The thermal influence of the
component of interest, tube, IC bank, etc., will be modeled as
a flux distribution over the region of contact of the device
with its mating surface. The problem geometry is then that
shown in Fig. 1 for a typical cell. A uniform heat transfer
coefficient h is considered in this work. The portion of the
surface on the device contact plane lying outside of the device
contact area is assumed to be impervious to heat transfer.

The problem geometry of Fig. 1 has been examined by
several investigators, !4 each of which considered restrictive
thermal boundary conditions. Van Sant! considered the case
of a uniform flux contact region and an isothermal contact
region conducting to a convectively coupled lower surface.
For the isothermal contact case a numerical procedure was
required and a plot of the results presented. His interests,
however, were only in examining the temperature variation
over the convectively cooled surface and are of limited utility
in the evaluation of the thermal resistance. For the uniform
flux case, only the series representation of the maximum
temperature variation over this surface was presented.

Schmitz2 considered the special case of an isothermal
contact strip conducting to a second, isothermal, surface. He
used separation of variables in his solution to this problem but
presented the series representation for only the heat flow
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Fig.1 Typical cell for analysis.

through the conducting member. This same problem was later
solved by Costello,? who used the theory of conformal
transformations to obtain a closed-form solution for this
special case. In his solution the conductance for the plate
section is determined in terms of complete elliptic integrals of
the first kind. The complex computational procedure required
to evaluate the pertinent solution parameters, however, makes
his results very difficult to use in practice.

Oliveira and Forslund* examined the case where both the
contact strip and the lower plate surface are convectively
coupled through film coefficients to two external fluid
temperatures. Again, separation of variables was used and a
constriction coefficient was determined. They presented a
solution for the uniform flux contact and their results agree
with those of Van Sant.! The solution where the contact
region is convectively coupled to a second fluid temperature,
however, produced some unexplained abnormal behavior.
The lack of explanation for this somewhat erratic behavior
suggests that there are still unresolved questions concerning
the convective contact solution.

It is the purpose of this paper to examine the flux prescribed
contact case with the heat conducted to a second surface
which is convectively coupled to an external fluid. This will be
done in a general fashion for arbitrary flux distributions and
for any combination of the geometric parameters. Two
specific flux distributions in addition to the uniform flux case
are examined in detail. One of these provides a very close
approximation to the uniform temperature contact situation
over a very wide range of the geometric parameters, while the
second distribution provides flux concentrations near the
contact centerline. The three distributions examined will be
useful in estimating limits for the thermal resistance by which
most cases of practical interest will be bounded. The thermal
resistance is presented for all three cases of practical interest
as a fucntion of the geometric parameters and the heat-
transfer coefficient # through the Biot modulus Bi.

Problem Solution
Mathematical Statement of the Problem

The geometry to be analyzed is that shown in Fig. 1. A
Cartesian coordinate system is set up as shown in the figure
with the origin coincident with the center of the contact
region. The typical cell half-width is denoted by b with the
contact having a half-width of a. The plate thickness is
denoted by c. Over the upper surface, the plate communicates
thermally with a fluid at a temperature T, through the con-
vective film coefficient A, while over the contact a flux
distribution g(x) symmetric about the vertical axis, is
prescribed. The remaining boundaries are assumed to be
impervious to heat transfer.

Considering steady-state heat transfer with no internal heat
generation, the governing differential equation is Laplace’s
equation in the two directions considered,

T AT

Av2 + A2

=0 (1
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with the boundary conditions given by

oaT -~

y=0 O<x=<a 5;=q_k(x)_
a

asx<b £=0 (2a)

8T —~h[T(x,c)—

y=c  0sxsb T = [ (xkc) g2 @b)
aT

x=0 O0<sy=sc — =0 : (2c)
ox
aT

x=b O=<sy=c — =0 (2d)
ox

In order to maintain generality of the analysis it is useful to
nondimensionalize the governing differential equation, Eq.
(1), and boundary conditions, Eqs. (2). To effect this nor-
malization, we introduce the following nondimensional
variables:

E=x/b §=y/b T*=kL(T-T,)/Q 3

where
o=t{ q(xax @

is the total heat flow rate through the plate over a length L.
Using the above definitions the governing differential
equation can be written as

3T 82T _

3%7 + 3 0 (5)

with boundary conditions.

AT _ —q(H)bL

=0 O=si=<e %o

e<t=<l %z;_ =0 (6a)
{=a 0s<t=<l ‘35?— =~BiT*({,a) (6b)
t=0 O0=<{=<a ‘%Tg =0 (6¢)
E=1 0<¢{<a %—? =0 | (6d)

where the additional parameters have been introduced

e=a/b a=c/b O]

as well as the Biot modulus defined by
Bi=hb/k ®)

It can be readily seen now by examination of Eqgs. (5) and
(6) that the solution for the temperature field will be
dependent upon the four nondimensional parameters
q(§)YbL/Q, Bi, ¢ and «, in addition to the two spatial
coordinates.

Analytical Solution

In solving the thermal problem described above, solutions
are sought to Eq. (5) that satisfy the appropriate boundary
conditions. Fas. (). Following the classical method of



N
R*= 50 T (£,0)dt (14)

which is the average dimensionless temperature over the
contact region. Using the expression developed earlier for the
temperature distribution in Eq. (14) yields the result

R*=a+1/Bi

sin (nwe)

= 2 bL
+ E n2x? [E SDQ(E)cos(mrE)dE]‘pn_e___. (15)

where ¢, is defined in Eq. (10).

A dimensionless thermal constriction resistance can be -

obtained by subtracting from the thermal resistance of Eq.
(15), the resistance of the slab which results from one-
dimensional heat conduction from the surface £=0 to the
fluid at temperature T,. The one-dimensional resistance is
given in nondimensional form by

R:_,=a+1/Bi (16)

Table1 Influenceof ponF,

r F.(e)
- Jp (nxe)

0 sin(nxe) /nxe

+ W% . 2J, (nxe) /nxe

1N 13DIC I 1U!1 LIIT Live vionve v aeme e oe - )
The nondimensional thermal constriction resistance can
now be compactly written in the form

. = 2 ) ) sin (nwe)
Rc"'”glnzrz Fn(é) ‘pn € ~ (21)

where F, (¢) and ¢, are obtained from Table 1 and Eq. (10),
respectively, for the particular case of interest.

Results

The thermal constriction resistance has been obtained for
the range of Biot modulus from Bi=0.01 through Bi=100.

]
244
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Fig. 2 Flux distributions.
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Fig. 3 Thermal constriction resistance for a = 0.05,
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Fig. 4 Thermal constriction resistance for « =0.1.

Dimensionless thickness ratios have been considered over the
range 0.05=<a=<2.0, and the dimensionless contact size
considered over the range of 0.1 <sex1.0. These results are
presented in Figs. 3 through 7. These figures correspond to
various values of the thickness ratio a with each figure in-
dicating the dependence of R? on the Biot modulus Bi and on
the relative contact size e,

It can be observed from these figures that the constriction
resistance is largest for the parameter combination of small ¢,
small a, and small Bi. The increase in R} with decreasing
values of ¢ is monotone for all cases as is expected. The
dependence of R? on «a, however, is dependent upon the
particular Biot modulus under consideration.

For small values of the Biot modulus, corresponding to
poorly conducting solid/fluid interfacial behavior, the heat
flow is forced to spread more uniformly over the upper,
convective surface. This can only be accomplished by a lateral
heat flow in the positive x direction and consequently for
small relative thicknesses « there is a large constriction in-
fluence. As the thickness increases and the lateral conductive
resistance therefore decreases, the thermal constriction
resistance also decreases as observed by comparison of the
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Fig. 5 Thermal constriction resistance for o =0.2.
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Fig. 6 Thermai constriction resistance for a = 0.5.
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Fig. 7 Thermali constriction resistance for o =2.0.

Bi=0.01 curves for example as the thickness ratio is increased
from 0.05 to 2.0.

For large values of the Biot modulus however, the
dependence of R? on « is the opposite of that described above.
For a very large Biot modulus, for example, the upper,
convectively coupled surface remains very nearly uniform in
temperature at the fluid temperature. In this case very large
fluxes can be tolerated at the convective surface with only a
slight temperature rise above 7,. For very thin members, «
small, the solid region constitutes a thermal short circuit and
the constriction resistance is small. As the thickness of the
member increases, the conductive resistance of the solid
portion increases and this causes a larger fraction of the total
heat flow to pass laterally prior to leaving the region at the
convective surface. Therefore, for a large Biot modulus, the
thermal constriction resistance increases as the thickness ratio
increases.
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When the thickness ratio is increased beyond a=0.5, the
dependence on the Biot modulus vanishes and the trends
established above for large and small Biot modulus converge
to a single value. The dependence of the constriction
resistance on « also vanishes in this limit and the thermal
constriction resistance becomes dependent on the single
parameter ¢, the relative contact size.

The influence of the three different flux distributions
shown in Fig. 2 is presented in Fig. 3 for the case where
a=0.05. The departures from the uniform flux distribution
results are largest for-this case and it can be seen from the
figure that the influence is small despite the widely differing
nature of the flux distributions. The insensitivity to the nature
of the flux distribution is attributed to the averaging
procedure used in basing the thermal constriction resistance
on the average contact temperature. This is a desirable effect
since in adding components thermally in series, it is the
average temperature which two contacting surfaces will have
in common. While the percentage difference in results due to
the different flux distributions increases as e=1 is ap-
proached, this is of little consequence since here the one-
dimensional resistance is the dominant one. It is interesting to
note, however, that the constriction resistance approaches
zero for all flux distributions considered as e approaches
unity. This result is apparent upon examination of Eq. (17)
but is not an obvious one based solely on physical reasoning.
This peculiarity is also attributed to the averaging process
carried out in arriving at Eq. (17).

Conclusions and Discussion

The thermal constriction resistance corresponding to a
partially flux prescribed surface conducting to a second
surface which is convectively coupled to a fluid environment
temperature has been determined in this work. The problem
has been soilved in a general fashion for an arbitrary flux
distribution over the contact region and three flux
distributions have been specifically examined. Solutions have
been obtained for the range of the Biot modulus
0.01<Bi<100.0 and for the thickness range 0.05<a=<2.0.
For each of the above variable combinations the relative
contact size influence was determined and plotted for the
range 0.0l <se<1.0,

J. SPACECRAFT

It was found that the thermal constriction resistance, when
based on the average contact temperature, is relatively in-
sensitive to the precise nature of the applied flux distribution
over the range of primary interest of small e. This insensitivity
is attributed to the averaging of the contact temperature.

It was also found that the maximum thermal constriction
effect is obtained for the parameter combination where both
the Biot modulus and the width ratio are smallest. For small
values of the Biot modulus, the influence of increasing the
thickness ratio is to decrease the thermal constriction
resistance. Conversely the minimum thermal constriction
resistance is obtained for situations where the Biot modulus is
large and the thickness ratio is small. For large values of the
Biot modulus, the influence of increasing the thickness ratio is
also to increase the thermal constriction resistance. For
thickness ratios larger than 0.5, the above two trends ap-
proach their common asymptote and an insensitivity of R} to
both o and Bi is exhibited.
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