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Abstract

In many engineering applicatiomns it is of par-
amount importance to be able to predict the thermal
conductance of surfaces in contact. These predic-
tions must be accurate and preferably contain a
minimum number of surface roughness parameters. The
work prasented here is an extension of Greenwood's
(1966) analysis and is aimed at providing engineer-
ing correlations for the prediction of contact
conductance in rough bur f£lac surfaces where the
deformation is elascic., All rough flat surfaces
must at some point in time be bound by this mode of
deformation esven though initially the contacting
asperities deform in a nonelastic manner.

In the analysis presented here, the surface
roughness was not restricted to amy particular dis-
tribution and the asperities were assumed to have
constant peak radii. In the thermal modelling the
effeect of conscriction is included.

To make the amalysis useful for practicing en-
gineers, correlatiouns were obtained for nearly
Gaussian distributions.

A comparison between correlation tresulting
from this work and those of previous investigatiocns
indicated the following;

- Mikic (1974), on the basis of previous work
by Cooper, Mikic and Yovamovich (1969) and
by assuming that the elastic contact area is
exactly half the plastic contact area, derived
the following expression;
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- Bush and Gibson (1979), assuming a Gaussian
discribution of the surface roughness and a
variable peak radius, suggest that a good
corzelation of their results is;
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- In the work presented here it was found that
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where ac** nondimensionalized thermal conduc-
tance = heo/ky

5 < mean pressure
E' = composite elastic modulus
¢ = composite RMS roughness
8 = mean asperity peak radius
tand = mean slope of the asperities
B4 = the fourth moment of the surface

roughness

All the investigations included the effect of com~
strictica. .
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An examination of the above correlacions reveals
that the one due to Mikic (1974) and the one pre-
sented in this paper are almost identical and nearly
insensitive to secondary surface roughness parameters.
This is not so clear from the axpression by Bush and
Gibson (1979). Insensitivity to secondary surface
roughness parameters is very desirable because the
majority of industry does not have ready access to
these parameters.

The influence of the thermal constriction nay
be observed from the work of Greemwood (1966) and
the current paper. Greemwood (1966) did not consider
thermal constriction in his amalysis and this shows
up through a lower dependence of load on the contact
conductance.

Nomenclature
Hertzian contact area

Apparent contact area
Real contact area

K ale

Circular microcontact radius

Circular heat flux tube radius

Elastic modulus

Equivalent elastic modulus
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Contact load
Unit surface conductance

Nondimensional unit surface conductance

Thermal corductivity
Harmonic mean thermal conductivity

Asperity density om a rough surface
Number of contacting asperities

Mean coutact pressure
Thermal constriction resistance

Thermal comstriction parameter

Ngx;’vmnngrvrg;g‘m

A coordinate perpendicular to the contact
plane

Greek Symbols

8 Asperity tip radius

-4 Standard deviation of the asperity height
distribution

n Contacting aspericy density withia the
apparent area

§ Compliance

Poisson's ratio

€ Ratio of microcontact radius to correspon-
ding heat flux tube radius

HBa Integral of the Gaussian distributicn of
order n.

<

Subseripts

1,2 Referring to two solids in a contact
i Referring to an individual asperity
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Physical Model

Real surfaces, when viewed under high magnifi-
cation comsist of a multitude of apparently random
peaks and valleys (Greenwood, 1964). Initial con-
tact between two such surfaces occurs just at-the
highest asperities while coutinued loading causes
existing microcontacts to grow in size and new sites
to develop.. The mode of deformation of any asperity
may be either elastic or plastic depending upon sev-
eral parameters. At all times asperity deflection
is assumed to occur independently and no microcon-
tact coalescence is possible. All loading couditions
produce nearly constant average contact size allowing
a quasi-direct relation to occur between the real
contact area and the load (Archard,l1953) a necessary
consideration to satisfy the classic laws of frictiom
(Bowden and Tabor, 1954).

To mathematically model contact mechanics with
two rough surfaces is unnecessarily complex, and
following with Greenwood and Tripp (1971) it is pos-
sible to model any real contact as one between a
smooth, nominally f£lat, elascic halfspace and an
elastic surface with some equivalent geometry and
roughness. The asperity peaks are assumed to be
distributed according to a Gaussian discribution
about some mean reference plane and are hemispheri-
cally dome shaped near their tips. Although it seems
{atuitive to include some dependence of asperity tip
radii with asperity height (Mikic, 1973), the authors
believe it reasonable to assume that the asperity
peak radii, 3, are constant (Greenwood,l364).

In the past, authors (Mikic, 1973; Cooper, Mikic

and Yovanovich, 1968) have described real surfaces
by the mean slopes of their roughness profiles and
through mathematical expressions such as moments of
the power spectral demnsity of a surface profile
(Bush and Gibsom, 1979). It should be remembered
that the aim of this development is to derive an

Tession allowing a unit surface conductance to
be easily calculable. Thus the parametars used in
this exercise must be readily obtainable. Therefore
it is decided that a real surface may be described
by the standard deviation of asperity peaks, g, the
comstant tip radius, 3, and N, the surface demsity
of asperities. The authors realize that the complete
surface is being described only by the profile in-
formation near the peaks and this may be justified
as this 1is the portion of the real surface which is
in actual contact.

A characteristic reference plane exists through
the rough surface from which the surface height, z,
may be continuously measured. Additiomally, d, de-
fines the proximity of the reference plane to the
smooth £lat surface (see Fig, 1l).

A1l microcontacts are circular, as they are
formed from hemispherical asperity peaks and they
may be of different radii depending upon the axtent
of asperity deformation. Hertizian theory is applied
to the contact of individual asperities and Timoshenko
and Goodier (1951) present the associated theories
of elasticity to determine relations for the area of
contact, A, the radius of the contact area, a, and
the load supported, Fi, in terms of §, the asperity
compliance (defined as the distance by which points
far from the contact zone approach each other during
the contact).

A = 788 (6)]
a =/35 (2)

1f che asperity height distribution is repre-
sentad by some statistical fumction g, whera dg(2)
represents the probability of an asperity peak oc-
curing between height z and z+dz, then, any asperity
will be in contact if its undeformed height is greater
than the distance between the reference plane and
smooth halfspace. Hence the probability of a con-
tact is givem by

Probability of a Contact = J $o(2)dz {4)
4

The oumber of contacting asperities existing
for a specific approach of both bodiss, with appar-
eat contact area, A, given by

n =M J do(2)dz &)}
d

Greenwood and Williamson (1966) have extended
this concept and have performed the following basic
substitutions. -

Determine the asperity compliance to be:

§ =z -d (6)

The real area of contact, Ar, visualized as the
sum of the individual microcontact areas is given by:

AT = T3NA J. (z-d) ¢,(z)dz N
d

Nondimensionalizing the distance parameters
with respect to g, .

A= d/e (8

h = z/c 9

Now introduce a new term representing the in-
tegral of the asperity peak distribution of order
s

ua(A) = r(h-x)“ $*(ddh . (10)
A

Thus the real area of contact may be written as:
Ar = 78NAg u1(A) (11)
and the load carried betweem two surfaces is:

F e 2/3 zriAall2 32 3124, (12)
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Figure 1. A Smooth Flat Halfspace in Contact

with a Flat Rough Surface.




Heat transfer is examined for engineering con-
tact conditions in a vaccum where radiation is
negligible. Thus, ouly direct tranmsfer of heat by
conduction through the discrece microcomtacts is
possible and to understand this further it is nec-
essary to present the model of a heat flux tube.

Associated with each microcontact is a pair of
abutting cylinders called heat flux tubes. Each is
geometrically defined by cylindrically shaped closed
boundaries extending from the contact inco the body.
These boundaries are adiabatic so that all heat trans-
fer within each body flows through a bundle of tubes
aligned with the flux. Each tube has an individual,
equivalent radius, bi, such that by>ay and thus the
cross sectiomal area available to the £low of heat
is choked at the microcontact creating the thermal
constriction resistance. The authors admit that a
paradox exists by using tubes of circular sectiom
rather than, say, hexagonal, as there will always be
interstitial area over which no heat flux exists.
This implies that the sum of the tube areas never
does (but should) equal the apparent comtact area.

Clearly, to develop equations describing the
heat transfer phenomenon occuring here, it is first

-necessary to obtain the solution of the situatiom

for ome microcontact and tube pair. To do this, one.
must determine the axisymmetric steady state solu-
tion of the Laplace equation in cylindrical coordin-
ates. This mixed boundary value problem is not
easily solved in closed amalytic form (Gibson, 1976)
but infinite series-type solutions are common
(Yovanovich, 1976 etc.). When one assumes that the
microconcact interface is planar, that all micro-
contacts are isothermal and that heat transfer occurs
for the case of conceantric microcountact and heat

flux tube, Yovanovich (1976) has shown the individual
asperity constriction resistance within cne body to
be:

- —s—ciL-
Rei Tkyay (13)
where kl = Thermal conductivity for solid 1

Sc14= a thermal constriction parameter for the
ith contact in solid 1
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However, approximare expressions for the ther-
mal constriction parameter exist for certain ranges
of a/b,

-1 - ai 2
Scy = 1 l'A197’bi 0 s 5 % 0.1 (15)

S—s 0.3 (16)
The total resistance to heat flow from ome

heat tube, through the coantact, to the adjacent tube

may be determined by the sum of the two individual

resistances.

Scy = (1 - §1§1.5
= i

Roy = Rcli + RCZi an

It 43 reasonable to assume that the coustriction
paramecers are equal on both sides of the contact
resulting with:

7L
Rog Z¥gay (18)

where km = the harmonic mean conductivity

Amalgamation of the Phvsical and Thermal Models

Within the apparent contact area, if n aspéri-
ties are touching, then the total thermal resistance
is:

.3
1

R ~ 451 Rog (19)

For the particular case where all touching as-
perities have the same thermal comstriction parameter
and contact radius,

o B0t . Sc
Re - 2nkma (20

which is an established relation by several authors

(See appendix A for further developments based on
this assumption).

Alternmatively, the situation where microcontacts
have different radii should be closely examined.
Using the number of contacting asperities as given
by equation 5, it is possible to conclude that the
unit surface conductance is given by:

18 1 I‘ é.(2)asdz
A im1 Roi A Sc_i

where the sumpation of the discrete number of com-
tact sites has been replaced by a continuous integral.

From simple geometric relations, it may be
shown that the radius of the microcontact is ex-—
pressed in terms of asperity tip radius and the
compliance

a = /8§ . (22)
or a = /Ba(A-n) (23)

Additionally, the xmean pressure, P, is defined
as the total load, F, divided by the apparent area
A. Substituting this with squarions 5 and 21, the
unit surface conductaance is:

o 3kmP w1000
BE = FE uyrs () (24)

Since the sum of the microcomtact areas repre-
sents the real comtact area and the sum of the heat
flux tube cross-sectional areas represents the ap-
pareant contact area,

a Ar
; e (25)

Through equation 11, the ratio of areas zay
be re—expressed so that

£ = /e 1 (%) (26)

Substituting this and the simplified forms of
the constriction paramecter into equatiom 24 result
with,

c = W, T w1/ (0)
GETug /o (A (I-1.3197[73N0uy (M)V-

T 0 g % < 0.

) 2n

- kw 2u21/72(0) a
© %GBT, (0 L-iraNouy (0 U517 b € 0.3
- (28)




It should be noted that the above expressions
are not restricted to the assumpcion of any specific
distribution of asperity peaks. Any representatcive
oachematical function may be substituted to simplify
the equatious into tractable form.

Consider the Gaussian distributionm of asperity
peaks. It is convenient to defigne % such that

u1/2())

where = #3/2(0{1-1.4197 [reuy (2) ]U-3}°

a
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s 0.1

z = u1 /o)
U320 {1=[reuy () J0-37L5 »

§ 0.3
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where Greenwood and Tripp (1971) have determined

N8g = ¢ a constant for a wide variety of experimental
surfaces.

Using equation 12 ir is possible to correlate
the following by power law

5
tea Gz G BY

for the practical range of 1.0 ¢ A g 2.5

S

Table 1 Power law regression coefficients

¢=0.05 ¢=0.07 c=0,10

a a a a a a
OSSﬁo.l 350.3 05;{0.1 3$0.3 Osgso.l 350.3
1.357 1.364 | 1.430 | 1.437 | 1.531 | 1.538
Y (~0.075 [-0.078 |-0.067 {~0.070 |-0.057 -0.059
0.9999 | 0.9997] 0.9998| 0.9999( 0.9967 0.9977

This enables the unit surface conductance to

be expressed in nondimensional form as summarized
below.

Table 2 Simplified expressioms for
non-~dimensional unit surface

conductance —_——
a a
c Osgso.l ' 350-3
0.05 3.15(%90.038<§790.925 3-l“(§90'039(§7 0.922
0.07 3.1‘9(2)0.034'(27_)0.933|| 3.48(290'035(2790'930
8 E ; 3 E
0.10 | 3.94()9-9%8 250943 3.93¢ %030 Zy0-941

Conclusions

Elastic deformation of touching, flat, rough
surfaces is considered where only heat conduction
through the asperity tips is Possible. When it is
assumed that the asperity peaks are hemispherically
shaped and are distributed in a Gaussian manner, then

the non~dimensionalized unit surface conductance is
found zo be

0.93

he* = 3.5 00325093 4 o7

E'

This shows_the conductance to be almost propor-
tional to the (P,E') ratio and nearly independent of
the (0/3) quantity. Thus, in the dimensional form,
the unit surface conductance is practically dependent
upon ouly one parameter which describes the surface;
¢, the standard deviation. This ability to aliminate
other surface parameters is possible through establish-
ing that N8a=c, a constant of which the exact value
is truly an arguable point. The authors, as yet, do
not have any experimental confirmation of this and
80 must raly upon the works of Greeawood, Williamsoun,
Tripp, Archard and Whitehouse. It should however be
‘noted that for several values of ¢ it is only cthe
coefficient in the previous equation wnich varies
while the exponents remain almost unchanged.

Additionally, if a further restriction of cone
stant microcontact radius is imposed, then,

he* = A.1(¢:€:_)C).03(i’?' 0.9A, e = 0.07
showing that the fashion in which the microcontact

radius varies over the apparent contact area does
oot scrongly influence the conductance.

Mik1c(1974) has examined a similar phenomenon
and determined that

b = 2.15 5 (can 2)0-08 (2,0.94

However some of his further data allows the above
expression to be written as:

0.03,5 .0.94

* o g &
he 2-1(8) (E')

which shows striking similarities with the equations
presented here.

Appendix A

For the particular case of constant microcontact
radius for all contacts, the following analysis is
conducted.

Combining equatioms 5 and 11 together,

A . 1108
or Ro(R)
Now, the resal area of contact may be evaluatad

by the product of the number of contacts and the
individual contact area,

= ara? ‘fé:.
Ar = uma or ar ~ 2

Thus equacting the above two expressions,

amg [AL(A)8C
ug(a)

Combining equations 5 and 12 and dividing by
the apparent contact area 4, a density of contacting
asperities is found to be

ug(A)
E'34/4 5372

3
2 u3/2()
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nE3




Copper, Mikic and Yovanovich (1968) have ob-
tained an expression for unit surface conductance

- 20kna
he e

e (Oui Gy Bk
u3/2(k) ScE's

ot he

However, rewriting equatioun 12 and substituting
in the above, :

o Xua(Vus (M)
Se

ko
he (N8o) 37

Now it is possible to express a new variable,
', where

Yua(Adus (M

I = e (NBa)

Greemwood and Tripp (1971) have determined that

NBo 1s approximately constant for a wide variety of

engineering surfaces. Let this quantity equal ¢, a
constant

¥8o = ¢

Including equations 15, 16 it is possible to
write

T = e/igCORLO (1-1.6197(rCuy (1) 033 71-0
T o= G0 L-(rey (010033713,

§<o.3

Surely I must be load dependent and to establish

this relation, equation 12 is rearranged to give
B {' 2
Y %'3“3/2(“

It is now possible to conduct a power law cor-
relation over the range 1.0 s A § 2.5 of the form

-

where a, vy are given in table 3 for variocus values
of ¢ and based on both expressions for

Table 3 Power law regression coefficients

¢=0.05 c=0.07 c=0.10
a a a a a a
OSESO.I 350.3 OSSSO.I 350.3 0$g$0.l 350.3
1.815 1.816 | 2.064 2.049 | 2,424 2.368
0.931 0.931 | 0.940 0.939 | 0.953 0.951
0.999 0.999 | 0.999 0.999 | 0.999 0.999

Consider the unit surface conductance to be
expressed in dimensionless form

heg 3. 0-1)/2 3 4
he* = -k—n— - 23(5‘) ('E‘T)

Hence by substitution of the above numerical
data it is possible to arrive at the following equa-
tions for non-dimensional unit surface conductance.

Table 4. Simplified expressions for
nondimensional unit surface
conductance.

E 0sg<0.1 2:0.3
) 3
0.05 3.63(-;—)0'03(2—,)0‘93 3-53(%)0'03(?)0'93
2,0.03,2 .0.94 3,0.03,3 ,0.94
0.07 A.lB(s) (E,) 4.10(3) (E.)
3 3
6.10 6.85(%90'02(§7)0‘95 4.74(%00'02(3790‘95
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