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Abstract

Steady-state thermal constriction resistances
of doubly-connected, planar, contact areas bounded
by coaxial circles, squares and equilateral tri-
angles under uniform flux conditions are examined.
The Surface Element Method (SEM) is employed <o
obtain numerical values of the dimensionless
constriction resistance ASR for the square and
triangle for several values of the geometric
parameter ¢ = JAy/Ag with (A, - Ay) = A, the
contact area. Several geometric parameters of
the contact areas are examined as possible choices
for the characteristic dimension, 8, and the
dependence of ASR upon ¢ in the range 0 < ¢ < 0.9999
is examined. Correlations of the dimensionless
constriction resistance are developed for the
square and triangle based upon the analytical

solutions for the circle employing § = /K: and
§ = P,, the outer perimecer.
Nomenclature
Ac = contact area (A° - Ai)
Ai = inner projected area
o = guter projected area
2a = inner diameter or inner length dimension
2b = guter diameter or outer length dimension
Ci, i=1,...7 = correlation coefficients
P° = oguter perimeter of contact area
Q = total heat flow rate
R = thermal constriction resistance, Eq. (4)
R* = dimensionless constriction resistance
(A6R)
r = distance from the source point to the
field point
T = temperature
T(=) = reference temperature
x,¥,2 = Cartesian coordinates

Greek Symbols
= characteristic dimension

= thermal conductivitcy

= gquare root of the area ratio (JZI7K:)
= point source coordinate

temperature excess (T - T(=))

= average temperature excess, Eq. (5)

= point source coordinate

= Pi
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p = polar coordinate
V2 = Laplacian operator
Introduction

Several papers have been published during
the past several years concerning the steady- =~
state, thermal constriction resistances of
planar, singly-connected [2-7] and doubly-
connected [3,5-7] contact areas on insulated,
isotropic half-spaces. The two usual contact
area boundary conditions which have been examined @~ = —
are the uniform Neumann condition [3-6] and
the uniform Dirichlet condition (7]}; although a
paper on the effect of various flux distributions
over a circular contact area [2] has been published.

A large variety of singly-connected contact
geometries under uniform Neumann conditions have
been studied: i) circular [1-5], 1i) rectangular = —
or square {1,3,4}, 1iii) triangular {6}, iv) semi-
circular [6], and v) other non-symmetric shapes
[6}.

A single paper [7] has been published recently =
which examines the influence of uniform Dirichlet
conditions over singly- and doubly-connected,
c¢ircular and rectangular contact areas.

The concept of employing the square rocot @
of the singly-connected contact area as the
characteristic dimension for the normalization of
the constriction resistance proposed by Yovanovich 77
{4,6] was used to great advantage by Schneider (7]
when he examined doubly-connected contacts under
uniform Dirichlet conditions.

The purpose of this paper is to obtain com- = —
striction resistances of doubly-connected, square
and triangular contact areas under uniform
Neumann boundary conditions, and to examine the
effect of several other characteristic dimensions
upon the normalization of the resistance, and to =
compare the results with those of the analytical
gsolution obtained for the circular, annular
contact area (5] as shown in Fig. 1. 77
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Fig. 1 Doubly-connected contact geometries




Problem Statement and Resistance Formulation

Steady heat conduction from a doubly-connected,

planar, coutact area through an isotropic thermal
conductor 13 described by Laplace's equation:
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where the temperature excess 8 = T - T(=), and
T(») is some convenient reference temperature
associated with points which are located at
distances which are large relative to some char-
acteristic dimension, &, of the contact area.

With the origin of the Cartesian coordinates
located ac the center of the inner projecred area,
Ay, the boundary conditions are

38
1) z=0, (x,y) within Ai’ 3z 0
38 .9
(x,y) within Ac' e XAC
36
(x,y) outside AO, 3 0 (2)
11) p s/x% +y2 =0, . 8,38,
Ix 3y
110 /2 +y2 + 2% 5w, 8 +0

The solution to equation (1) which also
satisfies the boundary conditions, equations (2),
is [3,7]
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with ¢ = v/(x-e)2 + (y-n)2 + z2 provided the heat
flux, q 13 uniform over the contact area, A _,
The thermal constriction resistance due to
steady conduction from an arbitrary contact area
subjected to arbitrary Dirichlet or Neumann
boundary conditions is defined as the average
temperature of the contact area minus the reference
temperature divided by the total heat flow rate,
Q, through the conductor. The mathematical state-
ment of this definition 1s, therefore,

R = Bng- 0) (4)
with - 1 r
0= e J} 8(z=0) dAc (5)
[ A
c
and
Q= JJA quc (6)
c

For the Neumann problem with uniform heat
flux, equation (3) with equacions (5) and (6)
becomes [3]:

1 dAc
2R = = ” ” - dAc €))
A A A
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An analytical ‘solution to equation (7) is
available for the circular annular contact area
{5]; but it is very difficult or impossible to
obtain amalytical solutions for arbirrary, doubly=-
connected contact areas such as the square or the
triangle. Numerical solucions are therefore
required.

Numerical Solutions and Resultrs

The numerical method used here is one which
has proved to be very satisfactory for solving a
variety of thermal contact problems. The method
consists of dividing the contact area into a
finite number of surface elements over each of
which the heat flux is assumed to be uniform. The
temperature excess at the centroid of each surface
element is then determined by.

N
8 = I C .q (8)
1 1Y
with the influence coefficients, cij’ defined by
¢ oL [ %y .
i3 2=a J T
A 1j
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and Tiy§ is the distance from the centroid of the
ith surface element to an arbitrary location
within the jth surface element.

Analytical expressions for the influence
coefficients have been developed for circular
and annular surface elements [5], for rectangular
surface elements [7] and for triangular surface
elements (8].

The average temperature of the contact area
is given by

1 NN
== I C,q, dA (10)
Ac {=l jel i1 %3 ci

and the constriction resistance for arbitrary flux
distributions is given by

L NN N
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For the uniform heat flux problem considered
here, equation (11) simplifies to

1 N N
R== L L C,,6dA (12)
A2 {=1 jm=1 1 Tt

Equation (12) is the discretized equivalent of the
analytical expression, equation (7).

The numerical procedure and the convergence
study are similar to that employed by Schneider
[7] and, therefore, will not be given here.

Numerical Results and Correlations

The numerical values of the comstriction
resistance obtained by means of equations (9) and
(12) were normalized with respect to the thermal
conductivity, A, and the characteristic dimension,




§, resulting in a dimensionless constriction
resistance R* = A4R.

Several geometric characteristics of the

doubly-connected contact areas were examined. Some

proved to be poor candidates because the normal-
{zed resistance, R*, as a function of ¢ = /Ai/Ao
was not monotonic and diverged yielding large
values of R*. It became apparent that § = /K;
which was an excellent characteristic dimension
for singly-connected contact areas [4,6] was not
an appropriate choice for doubly-connected contact
areas over the full range of the parameter, ¢.
Based upon the analytical solution for the annular
contact area [5] it was decided to use § = /Z: and
§ =P .

o

The normalized numerical results for A /Z: R
are presented in Fig. 2 for the full range of ¢
and in tabular form in Table 1. For very thin
contact areas corresponding to ¢ 2 0.995, A /K: R
is presented in Fig. 3.

Two correlation equations were developed for
A /A—CR; one for € running from 0 to 0.995 and the
other running froam 0.995 to 0.9999. In the range
0 e s 0.995:

Table 1 Numerical values of A/K;R vs €
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Fig. 2 Dimensionless constriction resistances vs
geometric parameter ¢
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Fig. 3 Dimensionless constriction resistances vs
geometric parameter ¢

€ Circle Square Triangle
0.0 0.4789 0.4732 0.4602
0.1 0.4752 0.4695 0.4566
0.2 0.4655 0.4597 0.4466
0.3 0.4509 0.4449 0.4318
0.4 0.4321 0.4259 0.4125
0.5 0.4092 0.4025 0.3890
0.6 0.3815 0.3744 0.3607
0.7 0.3476 0.3399 0.3262
0.8 0.3040 0.2957 0.2824
0.9 0.2402 0.2317 0.2195
0.92 0.2223 0.2139 0.2022
0.94 0.2009 0.1928 0.1817
0.96 0.1739 0.1661 0.1560
0.98 0.1350 0.1282 0.1197
0.99 0.1041 0.0983 0.0914
0.995 0.0798 0.0750 0.0694
0.9975 0.0608 0.0569 0.0525
0.999 0.0421 0.0392 0.0360
0.99925 0.0375 0.0349 0.0320
0.9995 0.0317 0.0295 0.0270
0.99975 0.0238 0.0221 0.0202
0.9999 0.0162 0.0150 0.0137
c, ©3
() = R™(e = 0 (1.0 - &) %) (13)
1

vhere R*(e = 0) is obtained from Table 1 and the
correlation coefficients ¢y, ¢y and cj are ob-
tained from Table 2. The maximum difference
between the values predicted by equation (13) and
the computed values are 0.497 at ¢ = 0.2 for the
circle, 0.58% at € = 0.995 for the square and
0.932 at € = 0.995 for the triangle.

In the range 0.995 < ¢ £ 0.9999 based upon
the analytical solution and its correlation [5]

we recommend
c
/1< m =2 (14)

L.y
€

*
R (g) = ¢

4

wvhere the coefficients ¢4 and cg are also obtained
from Table 2.

The excellent agreement between equation (14)
and the computed values can be seen in Tables 4, S
and 6 where the maximum difference i{s -0.32%
which occurs at ¢ = 0.9999.

The alternate choice of the characteristic
dimension § = P, which is recommended for very
thin contact areas yields the following correlation

equation: c

3
AR = cg tn [T l1 (15)
€

Table 2 Correlation coefficients for
equations (13) and (14)

Geometry ¢ c c c c

1 2 3 4 5

Circle 0.99957 1.5056 0.35931 0.08915 39.66
Square 0.9998 1.5150 0.37302 0.078845 68.59
Triangle 1.0001 1.5101 0.38637 0.069157 115.91




Table 3 Correlation coefficients for
equations (15) and (16)

Geometry C6 c7
Circle 0.31604 40
Square 0.31538 69
Triangle 0.31529 116

where the correlation coefficients cs and c¢g for
the three geometries are given in Tables 2 and 3,
respectively. It can be seen in Tables 4, 5 and
6 that there is excellent agreement between the
computed values of AP R and those predicted by
equation (15).

Noting that the correlation coefficient c4 is
a vary weak function of geometry and that it is
also approximacely equal to x/10, an alternate
approximate correlation equation was developed:

c
” 7
I

APOR - N
€

(16)

where cg of equation (13) is replaced by the
rounded values cy of equation (16). From Tables
4, 5 and 6 it can be seen that equacion (16) pre-
dicts values of AP,R which are in good engineering
agreement with the numerical values of AP R for
the three geometries examined.

Conclusions

The Surface Element Method has been employed
to obtain the thermal constriction resistance of
doubly-connected, square and triangular, contact
areas which are subjected to a uniform heat flux.
Numerical values of the normalized counstriction
resistance, R*, are presented in tabular form
over the range 0 < ¢ < 0.9999 which covers most
engineering applications for § = /Ac and § = P,.
Several correlation equations are presented for
AYAcR and AP,R which are in excellent agreement
with the numerical values obtained here. An
approximate correlation equation is recommended
for engineering applications to very thin contact
areas, ¢ > 0.995,

Table 4 Normalized constriction resistances for circular contact areas

WA R MAR g giee, AP R AB,R Z diff. AR
aum. eq. (14) num, eq. (15) eq. (16)

0.995 0.0798 0.0799 ~-0.13 2.8324 2.8218 -0.37 2.8360
0.9975 0.0608 0.0609 -0.19 3.0500 3.0404 -0,32 3.0559
2.999 0.0421 0.0422 -0.24 3.3380 3.3287 -0.27 3.3459
0.99925 0.0375 0.0375 -0.12 3.4330 3.4192 -0.40 3.4369
0.9995 0.0317 0.0318 0.31 3.5540 3.5466 0,21 3.5652
0.99975 0.0238 0.0239 -0.29 3.7733 3.7645 -0.23 3.7843
0.9999 0.0162 0.0163 -0.32 4,0608 4.0524 -0.21 4.0739

Table 5 Normalized constriction resistances for square contact areas

e WA R MAR o i AP R AP R % diff, AR
num, eq. (14) num. eq. (15) eq. (16)

0.995 0.0750 0.0750 -0.03 3.0038 3.0029 -0.36 2.9931
0.9975 0.0569 0.0569 -0.05 3.2208 3.2223 -0.28 3.2117
0.999 0.0392 0.0393 -0.13 3.5070 3.5117 ~0.19 3.5000
0.99925 0.0349 0.0349 -0.07 3.6051 3.6025 ~0.40 3.5905
0.9995 0.0295 0.0295% -0.04 3.7320 3.7305 -0.37 3.7179
0.99975 0.0221 0.0221 -0.11 3.9536 3.9492 -0.45 3.9358
0.9999 0.0150 0.0150 =0.11 4,2427 4,2382 -0.,45 4.2237

Table 6 Normalized constriction resistances for triaqgglar contact areas

e AR MER g gige, \PR AP R % diff. AR
num, eq. (14) num. eq. (15) eq. (16)

0.995 0.0694 0.0694 -0.02 3.1679 3.1563 -0.36 3.1674
0.9975 0.0525 0.0525 -0.01 3.3870 3.3749 -0.36 3.3868
0.999 0.0360 0.0361 -0.14 3.6709 3.6632 -0.21 3.6761
0.99925 0.0320 0.0320 -0.02 3.7675 3.7537 -0.37 3.7669
0.9995 0.0270 0.0270 -0.05 3.8930 3.8811 0.31 3.8948
0.99975 0.0202 0.0202 -0.13 4.1187 4,0990 0.48 4.1135
0.9999 0.0137 0.0137 -0.32 4.4166 4,.3869 0.67 4,.4026
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