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Abstract

A nuvel elastoconstriction resistance rela-
tionship has been developed to aid in the rapid
prediction of thermal resistance across spacecraft
bearings. Jhe development is based upon new defin-
itions of effective contact curvatures and recently
published approximations of the Hertz parameters.
The elastoconstriction expression shows explicitly
the influence of contact geometry upon the resist-
ance. Differences between the approximate values
and those predicted by the complex, exact Hertz
equations are less than 1.7% for all ball/race con-
tacts encountered in spacecraft design., A typical
example is cited to demonstrate the simplicity and
accuracy of the new expression.

Nomenclature
A = geometric parameter, Eq. (14)
a = sgemi-axis of elliptic contact area,

Eq. (5)

B = geometric parameter, Eq. (15)

b = semi-axis of elliptic contact area,
Eq. (6)

E(k') = complete elliptic integral of the second
kind

E;,E; = modulii of elasticity of bodies 1 and 2

K(k') = complete elliptic integral of the first
kind

k = ellipticity of the contact area

=222y

complementary modulus (k' = /1 - k2)

k' =

m = Hertz parameter for semi-major axis,
Eq. (10)

N = normal load on ball/race contact

n = Hertz parameter for semi-minor axis,

T Eq. (11)

Rg = constriction resistance of an isothermal
elliptic contact, Eq. (1)

X,y = cartesian coordinates

Greek Symbols

ratio of minimum/maximum effective curva-

a =
tures (= pmn/omx)’ Eq. (20)
B8 = ellipticity
A = physical parameter of bodies 1 and 2,
Eq. (7)
ALY thermal conductivities of bodies 1 and 2
Ag harmonic mean thermal conductivity of the
contact, Eq. (4)
v1,Vy = Poisson's ratios
1
zl’z}’}- local curvatures of bodies 1 and 2
2s 2
Px = effective curvature along x~-axis, Eq. (18)
Py effective curvature along y~axis, Eq. (19)
fmn = minimum effective curvature
Pmx = maximum effective curvature
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p* = total effective curvature, Eq. (8)
T = contact parameter, Eq. (16)
X = new thermal constriction parameter,
Eq. (26)
w* = thermal constriction parameter, Eq. (17)

Introduction

There is considerable interest [1] in the re-
sistance to heat transfer through the bearings em—
ployed in the numerous joints of the remote manip-
ulating systems (RMS) being designed for the space
shuttle. In a vacuum environment with negligible
radiation heat transfer, the resistance is due to
the constriction resistance at the ball/race con-
tact areas. To calculate this constriction resist-
ance, one must first use the classical Hertz theory
to predict the shape and relative size of the con-
tact areas; then employ the thermal constriction
resistance theory for each contact.

These calculations are rather involved re-
quiring the use of some iterative numerical proce~
dures or tables. To facilitate these computations
for ball/race contacts a new simplified, approxi-
mate elastoconstriction resistance expression has
been developed and is presented in this paper.

Thermal Constriction Resistance

The total thermal comstriction resistance of
an isothermal elliptic contact area (a > b) devel-
oped by Yovanovich [2,3] is

T T
Re = we/zxsa (1)

where wz i1s the isothermal thermal constriction
parameter given by

oI - 2/m k@) ()

in which K(k') is the complete elliptic integral of

the first kind of modulus k':

k' =/1 - (b/a)? (3)

In Eq. (3), a and b are the semi-major and semi-

minor axes of the contact area. Also As is the
harmonic mean thermal conductivity of the contact:

As = 2A112/(A1 + Az) (4)

whenever dissimilar materials are brought into con-
tact.

The geometric parameters can be determined by
the Hertzian theory of elastic contacts.

Hertzian Theory of Elastic Contacts

Whenever a ball is brought into contact with
a race, the Hertzian theory predicts an elliptical
contact whose semi-axes are related to the mechani-



cal load, physical properties and geometry as
follows [4-7]:
1/3 _

3NA (5)

a = ml3E—%y)

“and

3N A 1/3

b= ol ey

In Eqs. (5) and (6), N is the total normal load
acting upon the contact area, and A is a physical
parameter defined as
2 2
1 1- vl 1- vy B

A= E’[“—ir——'+ “‘E—*—] &)
1 2
when dissimilar materials form the contact. The
physical parameters appearing in Eq. (7) are
Young's modulus, E; and E;, and Poisson's ratio,
v, and v

(6)

1 2°
) The geometric parameter in Eqs. (5) and (6) is
20+ =2 4L 41,1 L (g
91 Pl 92 92 o]

and the local radii of curvature of the contacting
solids are denoted as o7, pi, P and p).

For the ball, py = p; = D/2 where D is the
diameter. In the case of the inner race, the
smaller radius of curvature is negative and the
larger radius of curvature is positive. Therefore,
p] = pg and py = -p ., In the case of the outer
race, both ra&ii of curvature are negative, there-
fore P1 = —P, and °1 - —o

An additional relationship between A and B
required in the Hertzian theory is

23-0 =2 +1 L 1,5 (9
P P2 P P

The dimensionless parameters m and n which
appear in Egs. (5) and (6) are called the Hertz
elastic parameters. They are determined by means
of the following Hertz relationships [4-7]:
2 BGe") 13

m= [; k2 (10)

1/3
n = 2k EKD] / (1)

where E(k') 1s the complete elliptic integral of
the second kind of modulus k', and

k' =/1 - K2 (12)

and k =2 =21
m a
The additional parameters k and k' are solu-

tions of the transcendental equation [4-7]:

' 2
B_ (L/kDE(k') - K(k") -
K™ TRGD - EGD @9

where K(k') is the complete elliptic integral of
the first kind of modulus k'. The ratio B/A can be
determined by means of the following two reduced
expressions valid for ball/race contacts:
=y 4L (14)
Py P

(5) - (8) into Eq.

and
=i 4+ 1
P2 Py

The Hertz solution requires the calculation of
k, the ellipticity, K(k') and E(k'). This calls
for the solution of Eq. (13) which relates k, K(k')
and E(k') to the local geometry of the contacting
solids. This is usually done by some iterative
numerical procedure [4,5] or with the aid of tables
[6] or graphs [7].

To this end, an additional parameter has been

defined:

cosT = B -4 (16)

B+ A

and computed values of m and n, or (m/n) and n, are
presented with Tt as the independent parameter.

Thermal Elastoconstriction Resistance

The results of the thermal analysis, Eq. (1),
and the results of the Hertz analysis can be com-
bined to give us the thermal elastoconstriction re-
sistance expression. After substitution of Egs.
(1), and re-arranging we obtain

x, 126 Nap 113 R T @Mk /@l =" an

‘where the effective radius of the contact is denot-

ed by p* = [2(A + B)]"l. The left hand side of
Eq. (17) is dimensionless; it contains the known
total mechanical load, the thermal, physical and
geometric properties of the contact, as well as
the unknown constriction resistance. The right
hand side of Eq. (17) 1is denoted by w which is
called the thermal elastoconstriction parameter.

*
Tables of m, n and ¥ versus the parameter T
have been developed [11]. Some typical values are
presented in Table 1.

New Thermal Elastoconstriction Parameter

Effective Radii of Curvature

‘with p) = p, for the ball.

The effective geometry of the contacting
solids will be redefined following the discussion
presented in Refs. [8,9]. The effective radii of
curvature in the x- and y-planes are defined as

l -l +£ (18)
°x "1 P

and

The smaller value of
Py and p, will be denoted Pumn s the minimum effect-
ive radius of curvature. The larger value will be
denoted Pmx*

‘Next we define the radius ratio,

<1 (20)

It can be demonstrated that the Hertz geomet-
ric parameters A, B and T are related to a, pp, and



mex as follows;
o = % 7(21)
“and
2a+B) =L - @+ @22
_ P
and
2(B-4)= (1 - a)/pmn (23)
7Therefore,
7(B - A) -l-a -
G+a " IT+a (24)
“and
o= 1l - cost ’(25)

1 + cosT

Elastoconstriction Parameter

Returning at this point to Eq. (17), let us
replace p” by ppn/ (1l + @), and rewrite Eq. (17)
generating the new expression,

1/3 K(k")
n

=X

(26)

1/3 T _ 2
As[24 NApmm] R, =~ 1+ a)

where x 18 the new thermal elastoconstriction para-
meter depending upon a only, because the transcen-
dental expression, Eq. (13), is a function of a
through Eq. (21).

Equation (26) 1is exact because, to this
juncture, no approximations have been made. The
exact values of the parameter X can be computed
from Table 1 or by means of the transcendental ex-
pression.

Approximate Solution Applicable to Ball/Race
Contacts

The various terms appearing in x, Eq. (26),
will be approximated. The modulus of K(k') is

R @n

For most ball/race contacts, the ellipticity
k=222 <020, therefore k' 3 0.98.

Let k' = gin w; therefore cos w = n/m. For
k' > 0.98 the complete elliptic integral of the
first kind can be approximated by

cos w

- (28)

In Refs. [8,9] 1t was reported that the ellip~
ticity k can be approximated by
b n °

ks —=m —
a m

a0'636 (29)

with an error not exceeding 3%. In the ball/race
contact range of a, the error is less than 1X.

7Equacion (28) can be written approximately

The factor (2/m)(1.174) = 0.7476.

‘where 0.01 s a £ 0.15.

K(k') = 2n [4/a°°836] (30)

Using the results of [9], it can be demon-
strated [10] that the Hertz parameter n is related
to o in the following approximate way:

0.636 1.636]0.333 (31)

n= [0.6175 a + 0.3674 a

with errors of 0.5%, 0.03% and 1% at a = 1.0, 0.10

and 0.01, respectively.

Taking advantage of these approximations, the
new thermal elastoconstriction parameter x can be
written as

1/3 a0'636 sn [4/00.636]

0.636 _ ) 3674 01.636]0.333
(32)

20+ a)
T [0.6175 a

in terms of the new parameter a.

A comparison of the approximate values of x
with the exact values of (2/7)[K(k')/m] shows that
the maximum difference is about 1.7% when a = 0.06.
For other values of 0.01 < a £ 0.15, the error is
less than 1.7%.

Equation (32) can be written as

1/3
1/3 (01.908) Enjﬁ/ao'636
0.636

21+
1.63611/3

" [0.6175 «

1 (33

+ 0.3674 a

The last expression can be factored to yield

2 n [4/a0-6%

T

[

] (34)
0.6175 + 0.3674 a]1/3

(1 + a) u1.272

X =

If we limit our approximation to values of a
corresponding to ball/race contacts, i.e. a £ 0.2,
Eq. (34) can be further simplified to

0.636
a

y = % (1.178) o2°%%% 40 (47 1 (35

For convenience,
the factor 0.750 will be used in Eq. (35).

A comparison of the approximate valueg of ¥,
Eq. (35), with the exact values of (2/7)[K(k')/m]
shows that the maximum difference is about 1,72
when a = 0,04, For other values of 0.01 ¢ a £ 0.15,
the difference is less than 1.7Z.

The new simplified approximate thermal elasto-
constriction resistance expression 1s

0.424 0.636]

1/3 T
As[24 NApmn] Re 0.750 a inl4/a

(36)

This covers the range of
most ball/race contacts.

If o > 0.15, the exact solution, Eq. (26) must
be used. Table 1 1s based upon the exact solution.

For a § 0.01, the ellipticity k becomes small
and it becomes necessary to use another parameter



parameter B = %- k to obtain additional approxi-
mations.

The transcendental equation can be written in
terms of B and a,

2 2,
xdr-s5-8/a -85 .. 4

E (/1 -82) -82k (/1 - 8D)

As Y1 - B~ + 1, we can write approximately,
E/1-82) =1 (38)
and

KGA - 89) & tn (4/8) (39)

For B8 ¢ 0.01, we can neglect the second term
in the denominator of Eq. (37) and write

2t @) - 11 =87 ta &2 210 w0
as the approximation to the transcendental equa-

tion.

The Hertz parameter m, Eq. (10), reduces to-

.2 1/3
m s (5] (41)
L]
For the elastoconstriction parameter, Eq.
(17), we can write approximately,

2/3
o' = 28] snless) (42)

A comparison of the values computed by means
of the approximations, Eqs. (40), (41) and (42),
for a § 0.01 with the values given in Table 1 shows
clearly how good these approximations are.

Illustrative le

To demonstrate the simplicity and accuracy of
the new expression consider the following typical

example:

Inner Race Contact Outer Race Contact

Po ™ =46 .44 mm

n; = =2.48 mm

- 1 -
Py = Py 2,38 mm

Py = 41,68 mm
oi = ~2.48 mm
Py ™ pi = 2,38 mm

Exact thod

A+ B=0.2301 0.2074
B - A= 0,2140 0.1913
t[Eq. (16)] = 25,56° 22.73°
a[Eq. (25)] = 0.0363 0.0404
v* [11) or Table 1 = 0.6246 0.6409
x[Bq. (26)) = 0.6321 0.6494

Approximate Method

Pe ™ Pon ™ 2,2514 2.509
Py ™ Py ® 62.01 62.00
a = 0.0363 0.0405
x[Eq. (35)] = 0.6426 0.6597
% Difference = 1.67 1.59
Conclusions

A new simplified approximate thermal elasto-
constriction resistance expression applicable to
most ball/race contacts has been developed. Its
range of applicability is 0.01 £ a § 0.15 and
11.4° ¢ t s 42.3° with an error less than 1.7Z.

Other approximate expressions are presented
for values of o ¢ 0.01 or v ¢ 11.4°, For a > 0.15
and v > 42.3°, the exact solution must be used.
Tabular values of the Hertz parameters and the
thermal elastoconstriction parameter are presented
for a > 0.15.

Acknowledgements

The financial support of the Canadian National
Research Council is greatly appreciated. The au-
thor wishes to acknowledge the computer work of
Mr. P. Shih who computed the values shown in
Table 1.

Table 1 Hertz Contact Parameters and
Elastoconstriction Parameter

k m n v
0.001 0.0147 14.316 0.2109 0.2492
0.002 0.0218 11.036 0.2403 0.3008
0.004 0.0323 8.483 0.2743 0.3616
0.006 0.0408 7.262 0.2966 0.4020
0.008 0.0483 6.499 0.3137 0.4329
0.010 0.0550 5.961 0.3277 0.4581
0.020 0.0828 4.544 0.3765 0.5438
0.040 0.1259 3.452 0.4345 0.6397
0.060 0.1615 2.935 0.4740 0.6994
0.080 0.1932 2.615 0.5051 0.7426
0.100 0.2223 2,391 0.5313 0.7761
0.200 0.3460 1.813 0.6273 0.8757
0.300 0.4504 1.547 0.6969 0.9261
0.400 0.5441 1.386 0.7544 0.9557
0.500 0.6306 1.276 0.8045 0.9741
0.600 0.7117 1.1939 0.8497 0.9857
0.700 0.7885 1.1301 0.8911 0.9930
0.800 0.8618 1.0787 0.9296 0.9972
0.900 0.9322 1.0361 0.9658 0.9994
1.000 1.0000 1.0000 1.0000 1.0000
EE—
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