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Abstract

Conduction shape factors for a disk on an insulated
half-space with arbitrary surface heat flux prescribed have
been calculated. The solution of the differential equation
was obtained by formulating the problem numerically in the
oblate spheroidal coordinate system. The uniform heat flux
case and that corresponding to a uniform disk temperature were
solved to test the stability and convergence of the numerical
solution scheme. Dimensionless resistances were found to be
0.2716 and 0.2507, respectively, which agree to within 1/2% of
the analytically known values. In both cases a 40 x 20 grid
was chosen,and solutions converged uniformly to the stated ac-
curacy in less than 50 sec IBM 360/75 computing time.

‘ Five additional cases were runyand dimensionless resistance
values were obtained which lie above and below the bounds
formed by the two classical solutions cited previously.
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Nomenclature

a = disk radius

A(\a) = function, defined by Eq. (3)

C = integration constants or finite-difference coeffi-
cients, defined in text

D = constant representing source term in finite-difference
equation

i,] = nodal point subscripts in n and 6 directiomns, respec-
tively i

1,J = number of spatial divisions in n and 6 directioms,
respectively

J, = Bessel function of the first kind of order v

k = thermal conductivity

P = heat generation/volume/time

P, = Legendre polynomial of the first kind of order n

q = heat flux

Q = total heat flow rate

Qn = Legendre polynomial of the second kind of order n

r = radial coordinate

R = overall thermal resistance

R* = dimensionless overall thermal resistance

T = temperature

v = argument of Q,, v £ i sinhn (i = /=1)

\' = volume

z = axial coordinate

Greek Symbols

n = oblate spheroidal coordinate

8 = oblate spheroidal coordinate

A = geparation constant

u = argument of P , u = cosf

Introduction

Thermal engineers who need to predict thermal resistance
to heat transfer across joints which are lightly loaded and
placed in a vacuum environment have been concerned with the
problem of accounting for the effect of the microcontact areas.
It is commonly assumed that these microcontact areas are cir-
cular, have identical diameters, and are uniformly distributed
over the apparent contact area. It has been shown by several
investigatorsl'5 that the dimensionless resistance R* = Rka is
equal to a constant which depends upon the heat flux distri-
bution over the contact area. To date only two cases have
been solved: 1) uniform temperature and 2) uniform flux. For




these two cases the dimensionless resistance is equal to
0.2500 and 0.2702, respectively. Further, it often has been
assumed by investigators that the uniform temperature and uni-
form flux boundary conditions yield the minimum and maximum
constriction resistances and that all other boundary condi- _
tions would result in dimensionless resistances bounded by

these values. It is the purpose of this paper to examine heat —
transfer from circular contact areas having several different

heat flux boundary conditions and to resolve the question of

whether it is possible to obtain dimensionless constriction _
resistances outside of the previously noted upper and lower

bounds. The resistances will be obtained by means of a finite- —
difference solution of Laplace's equation expressed in oblate

spheroidal coordinates.

Problem Solution

Problem Statement

Consider the resistance to heat conduction from a circu-
lar contact area placed on the surface of a half-space. The
surface of the half-space outside the contact area (r > a) is _
taken to be perfectly insulated,while over the contact area
(r < a) we will prescribe various heat flux distributions. —
The temperature within the half-space will tend towards a uni-
form value at distances large compared with the contact radius.
For convenience,it will be assumed that this temperature is _
zero.

When the temperature field has been determined every-
where in the half-space (z > 0) subject to the boundary condi-
tions over the contact area, then the average temperature of
the contact area, as well as the total heat flow rate through
the contact area, can be calculated, and hence the thermal con- —
striction resistance can be determined.

Analytical Solutions

If circular cylinder coordinates are chosen, then _
Laplace's equation, assuming axisymmetric heat flux distri-
butions, must be written as

21/3:2) + (3T/3r)/r + (3°T/32°) = 0 (1) -

subject to the following boundary conditions: _

1)z = 0, 0 <r < a, one of —

a) temperature is uniform, T = T, _
b) flux is uniform, q = qq
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or ¢)flux is a function of r, q < q(x)

2z = 0, T > a, surface is insulated, 3T/3z = 0

(2)

PHr =0, z > 0, temperature is finite
/ 2 2
HYr + z 7%, temperature goes to Zzero

The solution of Eq. (1) requires use of the infinite integral

[+

T(r,z) = cjr A()a) e M7 Jo<xr)-%l (3)
(o]

where the constant C and the function A()a) are to be deter-
mined from the boundary conditions along z = O.

The boundary conditions specified over r < a and r > a
result in dual infinite integrals which must be solved simul-
taneously for C and A(ra). Solutions are available only for
the uniform temperature and uniform flux cases?s For case
1, C= 2To/m and A(Xa) = sin(\a), whereas, for case 2,

C = aqo/k and A(Aa) = Jl(ka). The dimensionless constriction
resistances have been determined for these two cases to be 1/4
and 8/3ﬂ2, respectively. The theory of dual infinite inte-
grals has not yet been developed to the point where solutions
for other boundary conditions can be determined readily.

A great simplification in the analysis of the case of
uniform temperature can be obtained by use of oblate spheroi-
dal coordinates (n,06). By means of the following transfor-
mations

r = a coshn sinb, z = a sinhn cosb (4)
Eq. (1) becomes
(327/3n2) + tanbn (3T/3n) + (321/26%) + cots (3T/38) = 0 (5)

which is valid for axisymmetric temperature distributions.

The parameter n ranges fromn = 0 on the disk ton = ® corre-
sponding to distances large compared with the disk radius.

The other parameter, 6, ranges from 8 = 0, corresponding to
the Oz axis,to 6 = n/2,corresponding to z =0, r > a.

Because of recent developments at the University of Waterloo,
two additional analytic solutions have been found for a
cosine and cosine-squared flux distribution. These latest
results are incorporated in Table 1 of this work but are not
reported in detail here.
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For the isothermal boundary condition, Eq. (5) reduces

to 2 2 —
(3°T/3n") + tanhn (3T/3n) = 0 (6)
‘ whose solution can be shown to be
T =G, +C, cot " (sinhn) (7) -

Equation (7) with Cl = 0 and Cy = ZTO/W satisfies the mixed bound-
ary conditions along z = 0. The heat flux distribution over
the disk can be calculated and is

q=2k%k To/ﬂ a cosf =2 k To/(nfa2 - r2) (8)
By means of Eq. (8), the total heat flow rate can be shown to
be Q = 4ka T_ (9) -

According to the definition of thermal constriction resistance

and Eq. (9), the dimensionless resistance is 1/4. It is evi- _
dent that, for this case, using a more natural set of co-

ordinates has resulted in a great simplification of the ther- —
mal problem.

The constant flux boundary condition, as well as the
variable flux boundary conditions, will result in a two-
dimensional temperature field, at least near the contact area. _

‘ For these cases we must write T = T(n,0) and use Eq. (5) to
describe thermal equilibrium within z > 0. The solution of
Eq. (5) obtained by the method of separation of variables can
be expressed in the following form 6,

T(n,8) = I C_ Q (v) P (u) (10)

n=0 _

where Q, is the Legendre polynomial of the second kind whose —
argument is v = i sinhn,and P, is the Legendre polynomial of

the first kind of argument u = cosf. Solutions based upon
Eq. (10) are not available at present.

Finite-Difference Formulation _

As a result of the problems associated with obtaining an —
analytic solution for other than the most simple of disk
boundary conditions, a numerical solution was sought. In this
analysis the method of finite differences was used. If the
finite-difference spatial discretization of the governing dif-
ferential equation is performed in either the circular cylin- —
der or Cartesian coordinate system, the discontinuity of the

‘ surface flux distribution occurring at the disk outer edge
gives rise to considerable numerical difficulty, since the
second-order truncation error inherent in the expansion of the
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conduction equation cannot adequately approximate the large
adjustment of the thermal flowfield required in the vicinity
of this discontinuity.

The finite-difference equation to be used in the approx-
ijmation of Eq. (5) can be derived by two independent methods.
The first involves performing a Taylor series expansion to
second order on the differential Eq. (5). The second method,
the one used for this analysis, is to perform an energy bal-
ance on a control volume of finite dimensions. With this con-
trol volume centered about a point in space characterized by
the notation (i,j), i and j shall be used to indicate the
finite discretization of space in the n and 6 directions, re-
spectively., For uniform spacing in each direction independ-
ently, successive nodes are incremented in the n and 6 direc-
tions byamounts An and AS, respectively. Note that these in-
crements do not represent the physical distances separating
adjacent nodes but merely the change in the respective co-
ordinate value between these nodes.

The energy balance for the steady-state problem must
then provide a zero net energy addition to the control volume.
This is accomplished by a balance of the heat flow rates enter-
ing or leaving this control volume through the control volume
surfaces. For the axisymmetric thermal loading conditions
considered here, there will be four such heat flow rates.

Qi—%, , for example, represents the heat flow rate in the pos-—
itive i or n direction across the control surface located
along the n coordinate corresponding to a discretized location
i-%. The energy balance is then, for steady-state operation
with a total source strength PAV, given simply by

Qg 5~ Qasgy * Q g1~ O, g4 + PAV = 0 (11)

By using first central difference quotients between
nodes to approximate first derivatives, a linkage is set up
whereby the central nodal temperature becomes related to the
temperature at its four (six for complete asymmetry) nearest
neighbors (Fig. 1). By collection of common terms, the finite-
difference form of the energy balance can be written as

CS Ti + C2 Ti+l,j + C3 Ti,j—l + C4 T D

(12)

3= €1 T, 1,9¢1 1

where, after some manipulation and division by common factors,
the coefficients can be determined to be
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j -1
Cl o1 5 - tanhgéi s)An ] (13a)
(An)
i -1
Cz _ 1 S + tanhéi; s)An] (13b)
(an)
s 1
C3 - 1 > - cot[éiéﬁ)AS] (13¢)
(48)
i —1s
C4 _ 1 > + COt[éiQZ)AQl (13d)
(A8)
4
Cs = I Cn (13e)
=]
D PLv or equivalent source term (13f)

= 2mka coshn sin6 An A0

where the n-coordinate at node (i,j) is given by [(i-}s)An]
and the 6-coordinate by [(j-}s)A0].

Boundary Conditions

Having determined the nodal coefficients for the gener-
alized internal node, we now turn our attention to those nodes
for which the surrounding control volume has one or more sur-
faces contacting physical boundaries of the total thermal
system. The boundary control volumes (C.V.) of concern in
this analysis and their associated thermal boundary conditions
are illustrated in Figs. 2a-2d. Internodal links which do

Qjsiz,j

Tisl2,j=0
M Qb2

Qi-ve

a) C.V. along 8:=0 c)CV. at y—> @

i. Qi j-v2
Q.2 j
Q; jel2 Q‘_vz.‘
Q

Qi-v2, | (specified) i,jev2* 0
/ .] b} C.V. on disk (7 =0) d) C.V. outside disk(8=w(2)
-

Fig. 2 Boundary control vol-

Fig. 1 The coordinate system umes (C.V.) used in
and numerical molecule boundary condition spec-
definition. ification.
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not cross a boundary will have their associated coefficients E
unchanged and will not be considered here. The four boundary ;
conditions of direct interest in this problem will now be dis- 4
cussed. ’

a) 06 = 0. Because of the problem symmetry about the
vertical axis, the line defined by the equation 8 = 0 will ,
represent a zero flux boundary. Since the control volume has -
been selected such that the surfaces located at j=* for j =1 i
are coincident with this boundary of symmetry (Fig. 2a), this -
condition is reflected by the equation é

Q5157 © (14) §
1j=1

The effect of this condition on the coefficients of Eq. (13)
is that we must set &

C3 = 0 (15) B
For the case of no internal heat generation,D will also be
zero.

b) 6 = 7/2. This boundary is by the problem descrip-
tion itself another zero flux boundary. Again, because of the i
coincidence of the control volume surface j+s for j = J with
the physical boundary, this condition can be expressed, from
Fig. 24, by

=0 (16)

%, 59| g

By reasoning similar to that used for the condition at 0 = 0,
it follows that, to satisfy Eq. (16), we must set

C4 =0 (17)
Again D will be =zero.

c) n-+o(n = 8). For this boundary, illustrated in
Fig. 2c, we are concerned with a prescribed temperature at
n =, It was found numerically and can be illustrated ana-
lytically that it is sufficient, for the accuracy of the pre-
sent solution, to take n = 8 as the numerical equivalent of
n + », For convenience,the value n = 8.5 was used in this
analysis. This particular boundary then requires no special
treatment other than to insure that the temperature for all
nodes (I + 1,j) 1is assigned and maintained at the appropriate
specified value. This has been taken as zero for this anal -
ysis but can be arbitrarily selected to be any other value.
Again D must be set to zero since there is no internal heat
generation.
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d) n = 0. The final condition to be considered is the
specified flux condition at n = 0. These control volumes are
typified by that shown in Fig. 2b. Now, since the solution to
any problem will be directly dependent on the boundary condi-
tions, it is desirable that boundary conditions be specified
as accurately as possible. For this particular problem, since
we know the surface flux and by integration the heat flow rate
crossing the control surface on the disk, it is better to use
the known heat flow rate directly rather than to introduce the
error incurred in specifying the surface gradient which can
only at best be approximated by difference quotients in the
numerical treatment.

The total heat-transfer rate crossing a control surface
between 0. — A8/2 and 6. + A8/2 is given by the integral over

this cont¥ol surface,

o, + 28
o3 2
Q. . = Ta jr q(8) sin (28) d6 (18)
%55 ] g - A6
2

This heat flow rate represents a rate of heat addition to the
control volume, and, since the energy balance, Eq. (11), is a
scalar balance, its direction need not be specified. That is,
provided heat is added to the control volume in any manner at
a rate given by Eq. (18), the energy balance at that node will
be satisfied. Perhaps the simplest method of providing this
rate of energy addition is to assign to those control volumes
a total source strength of equivalent magnitude. This 1is

accomplished by the assignment

g, +22
o3 2
PAV = ma A q(8) sin 2646 (19)
8, - 5
h| 2

from which, for application to Eq. (12), the constant D
becomes

0, +-%9
= a .
D = 2kcosh(An/2) sinej AGAn‘[; _ ég_q(e) sin(26) de (20)
3 2

Since in this fashion the heat transfer in the positive n
direction has been accounted for, it would be redundant to in-
clude the nodal temperature linkage of nodes (1,j) and (0,3).
Consequently we set

c, =0 (21)
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as before. n=1

Numerical Solutions

So that we might establish confidence in the numerical

solution employing oblate spheroidal coordinates, the two
boundary conditions for which classical analytical solutions

are available were examined:
and 2) the uniform flux case.

1) the uniform temperature case,
Agreement is excellent in both

cases,with approximately 0.5% error when a 40 x 20 grid ar-

rangement was used.

To further establish this confidence and

to become familiar with the numerical characteristics of this
problem, the constant flux case was examined in greater de-
This was done with a 20 x 10 grid for which the re-

tail.

sulting solution is within 27 of the true value.

All solu-

tions were obtained by successive iteration over the field

using an over-relaxation factor of 1.5.
convergence characteristics for the problem.

Figure 3 depicts the
It is seen that

the maximum percent change between iterations of the field
temperature based on the average temperature over the field
monotonically decreases with increasing number of iterationms.
Convergence was assumed when this maximum percent change,
(AT/T)max x 100, was less than 0.05. It is seen from Fig. 3
that convergence of the resistance value occurs much earlier

in the computation.
the truncation error of a 20 x 10 grid.

The resulting 27 error is attributed to

It has been assumed

on the basis of these results that, for other flux distribu-
tions with identical grid sizing and convergence criteria, a

=]
il
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:_t' v
w — —4
2 \ 20
E . —_—
Q
= [ ot \ \‘ -5 %
& \ \ 5
@ \ E
E 4 B \‘ . —4 ——
- \ \ 0 '<'1|"
§ N\ ~—
N,

x 2+ x\s‘_- e e X e e M X e am X —5
W
a o'\o

) | [l TS NI S I 0

) 20 0 60 80 00 120 40
No. of ITERATIONS
Fig. 3 Effect of number of iter-

ations on resistance error
and on the maximum change
in temperature between
successive iterations.

comparable accuracy in
our solution is to be ex-
pected. For a 40 x 20
grid arrangement, this
error is reduced to ap-
proximately 0.5%. This
truncation error depend-
ence on grid size is il-
lustrated in Fig. 4,
where the dimensionless
resistance, R* = Rka, has
been plotted to display
the dependence on An.

The more minor influences
of the grid spacing in
the 0 direction are shown
by the curve parameter
AB/An. The relatively
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minor effect of this param- _

8 .
eter suggests that in ,
6 oblate spheroidal coordi- -
71Y  NOTES: 1} CONSTANT FLUX CASE nates the heat flow behav- |
2) 0-05 PER CENT MAX. . ‘o e —
ALLOWED TEMP. CHANGE tor is predominantly ome-
BTWN. ITERATIONS - dimensional in n,with ! _

small variations occurring -
in the 6 direction. These —
results then confirm our -~
previocus suspicions that
advantages similar to
L8/8m=0185 | those obtained by using
AB/An=Q'246 z 8 oblate spheroidal coordi- & —
A&/An=d-37é nates in the analytic sol- ’
L ey ution of the isothermal
disk casé can he realized
by using this coordinate
system in the numerical - ¢ _
formnlation of’ the ‘problem. =

"PER CENT ERROR IN RESISTANCE
; EN

| - : | ”'»M_l_tﬁ.

_ 0. 5 o . 5720 R After hav1ng estab- .. o s
= ' (7 an)2 7; SR © * Tished a level of confi=" = e
. B ~ dence in the numerical sol- [ —

Fig. 4 Effect of grld size on o ution of" this problem,we ] ,; e
error in resistance .- are now prepared to egxdm-. = .5

= . " ine arbitrary flux dlstrl-
butions over the dlsk Flux dlstrlbutlons were selected’ on-
the basis that Eq.: (18) be 1nteglable analytically in addltlon v
to. requlring that a spectrum of possible disk flux distrlbu*”””
tions be examined.. In this. fashlon,lt was p0531ble to examlne :
distributions in Whlch flux concentrations appear at the dlsk
center and outer edge in addltion to 1ntermed1ate loCatlonS« s
Although not required for the analysis, the multlpllcatlve _
constant was adjusted so that the total thermal loading of, ﬂhe'
 system would be the same for all cases con31dered751nce thlsﬁ&"
permits a direct comparison of field and surface temperatures.
 The various flux distrlbutlons are shown graphically.in Fig: 5%
where they are plotted as a function of the spheroidal’ coordl—if
nate 6, With these distrlbutlonsstha integral of Eq. (18) was
evaluated and the result used as input to the solution program,
The field temperatures were then computed, surface tempelatures“
found, the average surface temperature evaluated, and, based on f;'
' the total heat flow rate, the dimensionless thermal resistance" e
can be determined. The results obtained for the flux dlstrlj jf
butions considered are presented in Table 1. Where analytlcal |
solutlons are known,_the computatlonal error is evaluated,,_‘i .

L
BN

s Tt ety




76

350
‘_

300

200

150

<
100f= —
/// T~
Ve _/‘
50t —-7"/’ _ __/
// /
// _,/"
\Aé"l/ 1 ‘ l| ) i ! ) LR !
0 ol 02 03 o4 05 06 07 08 09 0
(%)
/2!
Fig. 5 Disk heat flux distributions. ii.
201— PR LEGEND
\ ‘ S i 50 sec (8)
\'\\ i emmmmmr g e 2T sin (260 |
\ﬂ' T e g 50 csc(8) -
w o a—ee— q= 6367 fan(8)" o
x5 \ . ———— g=150cos(8)
> o o 2 :
|-<-[ \ ------------ - q =200 cos“(8) Y
o | T . : ;
w :
m :
z i
Ll
'—.
w
O
<
.
@
>
wn

STRONG, SCENEIDER, AND 'YOV.ANOVICH‘

\ LEGEND / /

\ ——— g =50 sec{8) .

———— g =100 '
\ —————— q =127-3 sin(28) /

— —— q = 50csc(8) ' /
\\ — - — q = 6366 tan(8)

——— q =150 cos(8) /
eeeeeeneme @ =200 cos2(8) N

0 o2 04 06 08

8
(772)
Fig. 6 Variation of disk temperature L

for the cases considered.
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Table 1 Results and comparison of R¥*

Grid Computation-—

Percent sizing al time
1(6) Exact Present error (n-div.x (IBM 360/75),
8-div.) sec
q = 50 sec(6) 0.2500 0.2507 0.3 40x20 48
(isothermal)
q = 100 0.2702 0.2716 0.5 40x20 47
q = 50 csc(8) co 0.2889 P 40x20 96
q = 127.3 sin(26) ces 0.2773 .o 20x10 20
q = 63.67 tan(8) .o 0.2422 ... 20x10 18
q = 150 cos(9) 0.2813 0.2850 1.3 40x20 183
q = 200 cos?(8)  0.2882 0,2922 1.4  40x20 183

The surface temperature distributions resulting from each of

the imposed flux distributions are shown graphically in Fig.

6. Area weighted average surface temperatures have been used
in the evaluation of R¥. :

Conclusions and Discussion

One conclusion which might be drawn from this work,
though not the primary objective of the research, is that the
appropriate choice of coordinate system for the numerical anal-
ysis is instrumental in keeping the computational time for
solution to a minimum. The second and most important conclu-
sion to be drawn from this work, and contrary to some hypo-
theses in common usage, is that the thermal constriction re-
sistance of this system is not bounded by the values for the
uniform temperature and uniform flux cases. We have noted
several flux distributions which lead to resistances lying
outside of this range. If this work were to be continued,
certainly many more such cases could be found.
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