THERMAL RESISTANCE OF HOLLOW SPHERES SUBJECTED TO
ARBITRARY FLUX OVER THEIR POLES
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Abstract

An analytical study is presented for the general solution
of the thermal resistance of hollow spheres with arbitrary
flux over their contact areas. Resistances are presented for
two specific flux distributions: uniform and approximate iso-
thermal, for a practical range of the half-contact angle and
the radii ratio. Comparisons of the numerical results with the
well-known half-space and a two-zone model are msde over a
practical range of the parameters.

Nomenclature

Aq = contact area

inner sphere radius

b = outer sphere radius

2c = chord subtended by the contact area

= function defined by Eq. (23)

= thermal conductivity

= degree of Legendre and Chebyshev polynomials
Legendre polynomial

heat flow rate

heat flux

= heat flux defined by Egqs. (20) and (21)

= thermal resistance

= dimensionless sphere resistance (kbsinaR)
= constriction resistance
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= wall resistance

temperature distribution

average temperature

Chebyshev polynomial

spherical coordinates

= contact half-angle

angle parameters defined by Eq. (31)
= radii ratio (a/b)

= oblate spheroidal coordinates, Fig. 4
cosb

= exponent on flux distribution, Eq. (19)
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Introduction

The problem of determining the geometric, physical, and
thermal parameters that influence the effective thermal con-
ductivity of a bed of packed solid or hollow glass microspheres
in a vacuum reduces, in the final analysis, to the study of the
thermal resistance of a single sphere with multiple, small con-
tact areasl™® that are subjected to uniform flux or isothermal
boundary conditions. Chan and Tien% recently demonstrated
that the resistances of body-centered cubic and face-centered
cubic packed spheres can be related to the fundamental study
of a single sphere with two opposed contact areas, as shown in
Fig. 1. The analytical solution for the uniform flux condition
is available,z’4 but the analytical solution for the isother-
mal condition has not been obtained because of the great diffi-
culty inherent in the mixed boundary-value problem. In Refs.
1-6, it was stated, but not proved, that the resistance of a
solid sphere with two very small contact areas subjected to
either uniform flux or isothermal conditions can be modeled as
two constant flux or isothermal contact areas transferring or
receiving heat from two insulated half-spaces thermally con-
nected in series. Therefore, the total resistance of a solid
sphere should be approximately kcR = (16/372) for the uniform
flux condition and kecR = (1/2) for the isothermal condition.
Kaganer2 obtained a numerical solution for the isothermal case
and reported kecR = 0.55 when o = 11.54 deg for the solid
sphere. The question of the range of validity of the models
has not been addressed.

The purpose of this paper is to obtain a general analyti-
cal solution of Laplace's equation in spherical coordinates for
Steady-state heat conduction through a hollow sphere with
radii a, b (a < b) and thermal conductivity k. Heat enters and
leaves the sphere by means of two small circular contact areas
located at the poles and subtending the half-angle a. The
inner and outer surfaces are assumed to be perfectly insulated.
By means of the general solution, the two special conditions
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Fig. 1 Hollow sphere model.

Fig. 2 Equivalent
analytical model.

of a uniform flux and isothermal contact will be obtained and
examined.

Problem Statement and Solution

The geometric and thermal boundary conditions are shown
in Figs. 1 and 2. The governing differential equation in
spherical coordinates is

82T 2 3T
__.__+__

2 r J3r
or

2 )
1 3T cotd oT
= 9L _ 1
+ =5 2+ 5 58 0 @)
r 96 r

and the boundary conditions for the equivalent thermal problem
depicted in Fig. 2 are

r=a, 0<6 <m1/2, 9T _ 9 (2)
or




RESISTANCE OF HOLLOW SPHERES WITH ARBITRARY FLUX 123

oT

r =b, 0<6 <a, q=+k Py q(8) ‘ (3a)

a<esn/2,q=+k%r3=o (3b)
= 3T _

8 =0,asrs<b, ===0 (4)

8 =7/2, as<r <b, T=0 (5)

Because of symmetry, the appropriate boundary condition in the
diametral plane 6 = 7/2 is isothermal, and therefore zero
temperature was chosen for mathematical convenience.

The temperature distribution within the spherical wall is
of the following form:

T(r,8) = T [A S+ By
n=0 n n

'(nﬂ)] P_(cos®) 6)

where Pn(cose) are Legendre polynomials of the first kind of
degree n. The Legendre polynomials of the second kind, Q,
(cosf), are inadmissible because they become singular at 6 = 0
and will not satisfy the third boundary condition. Equation
(6) satisfies the third boundary condition for all n = positive
integers. A further restriction on the degree n is obtained
by the fourth boundary condition, which requires

T(r,m/2) = < [ A+ Bnr-(nﬂ')] P_(0) =0 (7)
n=o0o n

Since Legendre polynomials of the first kind have the follow-
ing property:

]

Pn(o) = 0, n =1,3,5,7,..., odd integers (8a)

Pn(o) # 0, n = 2,4,6,8,..., even integers (8b)
we must exclude Legendre polynomials of even degree. There-
fore, the solution is
I(e,0) = 1 [Arn+Br
? n n

-(n+l)] Pn(cose) (9)
n,odd

and the derivative with respect to r is

9T(r,8) _ 5 oA rn—l

3T - (ntl) Bnr_(n+2) ]Pn(cose) (10)
n,odd
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The first boundary condition will be satisfied for all 6 if we
put
n 2n+l
a

B =——A
n n+tl n

(1)

Finally, the coefficients A, can be determined by means
of the second boundary condition. Equation (10) [using Eq.
(11)] applied along r = b yields

(o]

: w™t [1 - €2n+l] A_P_(cos®)
n,odd

q(8), 0 £ 8 < a

=0, a <8 < /2 (12)

where € = a/b is the radii ratio.

The orthogonality property of Legendre polynomials can be
used to obtain the general expression for the coefficients A;.
After multiplying both sides of Eq. (12) by Pp(u)du, where
u = cosf, and integrating from 8 = 0(pu=1) to 6 = 7/2(u=0),
we obtain 1

q(e>Pn(u)du (13)

CcOSsa

b1 (2n+1)

(l_€2n+l) n

A

_ 1
n k

having put q(8) = 0 in the range 0 ¢ 4 < cosa.

-~

After substitution of Egs. (11) and (13) into Eq. (9), we
obtain the general temperature distribution within the hollow
sphere valid for any flux distribution over the contact area:

1
- q(8)P_(u)du
T(r,8) = — 3 <2n+l> 'l;so‘ : \:(E)n

k n,odd o [l - €2n+1]

+ (_n_i_i) €21:1+l (%) —(n+l)] Pn(u) (14)

Sphere Resistance

o

The expression for the thermal resistance of the sphere
will be determined by means of the following definition:

QR = T(source) - T(sink) (15)
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where Q is the total heat flow rate through the sphere, and T
is the contact area average temperature. The total resistance
of the sphere is twice the resistance of the equivalent prob-
lem shown in Fig. 2. Since the sink in Fig. 2 is at zero tem—
perature, the total resistance can be obtained from

R = j’f T(b,8)dA (16)
(& A ¢
C

where the elemental contact area is dA, = 27rb2 sin8d8, and the
total area is A. = 21b 2 (1 - cosa). The total heat flow rate
through the sphere is

D>|N

1

Q= _jijr q(e)dAC = 2nb2 q(8)du (17
AC

cosa

Substituting Eqs. (14) and (17) into Eq. (16) yields the
following general expression for the thermal resistance of a
hollow sphere valid for any flux distribution over the contact
area:

sina
R:
ke 1 X

T q(6)dy

cosa

1 1

n 2n+1
[ L+—7¢ ]-j P_(1)du q(®)P_(1)du
z CcCOoSsQ CcCOsQ.

n,odd [ n
2n+l

2n+l
€

] [1 - cosa] [1 - ]

(18)

where ¢ = b sina is the chord subtended by the contact area.
More will be said later about the use of the dimension ¢ to
nondimensionalize the sphere resistance. Equation (18) shows
that the sphere resistance is a function of the radii ratio e,
the contact half-angle o, the boundary condition, and the ther-
mal conductivity of the sphere. To obtain an explicit re-
lationship between the resistance and the boundary condition,

a particular class of problems will be examined next.

Temperatures and Resistances for Two Specific Cases

This section will deal with the sphere temperature distri-
butions and the corresponding sphere resistances for a class
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of problems corresponding to the following contact area flux
distribution:

q = qo(cos 5 - cos a)’ (19)

where q, is some convenient heat flux level which is to be
determined by the parameter v.

Since not all possible values of v are mathematically
tractable, two special cases will be examined. These corres-
pond to 1) v = 0, which gives q = dg> unif?rm flux; and 2)

v = -%, which gives q = q,(cos 68 - cos a)~%, a flux distribu-
tion that has its minimum value at the center of the contact
area 6 = 0. The second flux distribution has the same form as
the flux distribution over an isothermal circular contact sit-
uated on the surface of an insulated half-space7 and should,
therefore, be a good approximation to the still unresolved
mixed boundary-value problem for the sphere.

The heat flux levels, temperature distributions, and the
sphere resistances are given below for these two cases. The
heat flux levels can be shown to be

qO = 2 Q ’ v = —% (20)
4mb% V' 1-cosal
q = 9 v=0 (21)

° 27rb2 v 1-cosao

For v = 0, corresponding to a uniform flux, we have

KT(r,0) _ & E(r,ezn)[ _
b = It [ Geose) - R o] 2 G0 (22)

for the temperature distribution, with do given by Eq. (21),
and the function E(r,e,n) is defined as

('E)n +(_nl_ 201 (5) -(n+1)
n+

The sphere resistance for v = 0 is
2
g sin o ; E(b,e,n)[ Pn_l(cosa)-Pn+1(cosa)] (26)

n(l—cosa)2 n,odd a(2n+l)
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For v = -%, the approximate isothermal case, we obtain
© - ]
® KT(r,8) _ 5 2E(r,e,n) [ Ty(cose) - 1, (cos) ] Py (25
bqo n,odd n v1-cosa n

with q, given by Eq. (20), and where T, is the Chebyshev poly-
nomial of the first kind of degree n. An alternate and use-
ful form of these polynomials is®»

Tn(x) = cos (n cos—lx) = cosno (26)
The sphere resistance for v = -4 is
kcR = S1ind T E(b,e,n) x

m[l-cosa]” n,odd

[ cosno - cos(n+l)u] {Pn_l(cosa) - Pn+l(cosa)]
n(2n+l)

(27)

Numerical Results and Discussion

Computer programs were written to evaluate numerically
the expressions for the total sphere resistance. These values
are reported in Table 1 as functions of the two boundary con-
ditions, the half-contact angle, and the radii ratio. An iso-
thermality study was conducted for the case of v = =%, exam-
ining the temperature variation with a and € over the contact
surface. 1In Fig. 3, we observe that o has a small effect upon
the temperature distribution when a < 20 deg, and the sphere
is solid. The maximum difference is about 2% at a = 20 deg,
less than 1% at a = 5 deg, and negligible when a < 1 deg.
Figure 4 presents the contact area temperature distribution
when ¢ = 0.9, corresponding to a thin-wall sphere. It can be
seen that the proximity of the inner adiabatic wall to the con-
tact area reduces its isothermality for the v = -% flux dis-
tribution. However, when o < 5 deg, the maximum temperature
difference is less than 2%. Figure 5 shows the effect of the
half-contact angle upon the temperature distribution for
€ = 0.99, which corresponds to an ultrathin-wall sphere. It
1 can be seen that the maximum difference is about 10% for .

‘ @ = 10 deg and about 3% for o = 1 deg. It is apparent from
Figs. 3-5 that the flux distribution corresponding to v = =%
is an excellent approximation to the isothermal contact area
Provided that a < 1 deg and ¢ < 0.99. This range falls within
the realm of values encountered in most applications.

Table 1 presents the numerical values of the dimensionless
total sphere resistance, Egs. (24) and (27), over the practical
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Fig. 3 Solid sphere contact temperature distribution.
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Fig. 4 Hollow sphere contact temperature distribution.

range of o and €. We observe that, when € = 0 and a = 0.05
deg, R* = 0.5411 (0.5001), corresponding to v = 0 (-%). This
value differs by only 0.13% (0.027%) from the half-space solu-
tion. The effect of the inner spherical wall is of negligible
importance for € < 0.9, where the resistance has increased
1.18% (1.16%) over the solid sphere resistance. At € > 0.9,
the effect of the spherical wall is significant, and, when

€ = 0.99, the total resistance of a hollow sphere is 22.97%
(24.8%) larger than that of a solid sphere.

It also can be seen from Table 1 that, when € = o and
@ £ 1 deg, the total sphere resistance is very close to the
half-space solutions. When o = 1 deg, the sphere resistance
is 2.41% (2.54%) greater than the corresponding half-space
solution. It should be noted, however, that, when o < 1 deg
and ¢ > 0.9, the wall resistance is equal to or much greater
than the constriction resistance. For example, when a = 1 deg
and € = 0.99, the total sphere resistance is 5.33 (5.64) times
the corresponding half-space solution.

Normalization of the Sphere Resistance

During the early stages of this investigation, it was ob-
Served that the normalization of the total sphere resistance
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with respect to the outer sphere radius b gave values that
ranged monotonically from about 621.3 at o = 0.05 deg to about
6.7 at o = 5 deg when ¢ = 0 and v = 0. Multiplying the dimen-
sionless resistance by sina yielded new values, which now
ranged between 0.5411 and 0.5821 for the same range of a.
Therefore, bsina = c is a more characteristic dimension for
the solid and hollow spheres, as seen in Table 1.

It should be noted that bsino is equal to 1/V/7 times the
square root of the projected contact area. The projected and
the actual contact areas are related closely for small values
of a. The square root of the ratio of the projected area to
the actual area differs from unity by only 1.5% at o = 20 deg,
and the difference is negligible when a < 10 deg. The import-
ance of the square root of the contact area has been demon-
strated for arbitrary planar contacts on a half—spacelo’ll

Comparison of the Numerical Results with a Two-Zone Model

A simple two-zone model has been developed6 for the pre-
diction of the total thermal resistance of hollow spheres.
This model assumes that the sphere can be reduced to two con-
striction zones associated with the contact areas plus one wall
zone, as depicted in Fig. 6. Each constriction zone is bound-
ed by the contact area denoted by n; and an imaginary boundary
denoted by ny, shown in Fig. 7. This zomne is used to account
for the constriction resistance. The wall zone is bounded by
the inner and outer adiabatic boundaries and the surfaces de-
noted by 8 = B and 6 = (v - B). The shaded region shown in
Fig. 7 is not taken into account in this model, and, therefore,

0.96

0.94

T(8)/T(0)

0.92

0.90 { [ ! |
0.0 0.2 0.4 0.6 0.8 1.0

8/a
Fig. 5 Ultrathin wall contact temperature distribution.
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q=q(8)

Fig. 6 Two-zone model.

Fig. 7 Constriction zone.

the total resistance predicted by it will be slightly less
than the actual resistance when o is small.

The total sphere resistance is equal to approximately
twice the constriction resistance plus the wall resistance, i.e.,

R=2R +R (28)
c W
Oblate spheroidal coordinates were employed to obtain the
Q constriction resistance, assuming that the contact areas are

isothermal. The model yields

2kbsina RC = (1/7) arctan[(1l-¢€)/sina] (29)
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using the dimensions fo = b(l-¢) and ¢ = b sino shown in Fig. 7.

The wall resistance is based upon the assumption that the
planes 6 = B8 and 6 = (r -— B) are isothermal and is given by

kbsina R = [sina/m(1-€)] gn[l/tan(B/2)] (30)
The angle 8 is obtained from the geometry
. . 2 2.5
sinf = [sin“a + (1-€)7] (31)

and is seen to be related to the half-contact angle and the
radii ratio or wall thickness.

Equation (28) was used to compute the values of the total
sphere resistance given in Tables 2 and 3. It is evident
from Tables 2 and 3 that the values of R* predicted by the
two—zone model are in good agreement with those predicted by
Eq. (27) up to o = 1 deg and € = 0.99. The agreement improves
as o and € decrease. It can be seen in Table 2 that the con-
striction resistance is the dominant resistance up to o = 0.1
deg; at o = 1 deg it accounts for about 73% of the total re-
sistance. On the other hand, when e = 0.99, the constriction
accounts for 76, 60, and 67 of the total resistance at o =

Table 2 Comparison of Egs. (27) and (28) at € = 0.9

2=0.05 deg a=0.10 deg a=1.00 deg

B, deg 5.74 5.74 5.83
2R 0.4972 0.4944 0.4450
Ry 0.0083 0.0166 0.1654
R*[Eq. (28)] 0.5055 0.5110 0.6104
R*[Eq. (27)1 0.5058 0.5129 0.6260
0.05 -0.37 -2.48

% diff. -

Table 3 Comparison of Egs. (27) and (28) at ¢ = 0.99

a=0.05 deg o=0.10 deg a=1.00 deg

B, deg 0.58 0.58 1.15
2R% 0.4723 0.4450 0.1656
R§ 0.1471 0.2935 0.5551
R*[Eq. (28)] 0.6194 0.7385 2.7207
R*[Eq. (27)] 0.6241 0.7491 2.8204
% diff. -0.75 -1.42 -3.54
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0.05, 0.1, and 1 deg, respectively. Since the two-zone model
yields a simple, accurate expression that shows the relative
importance of the constriction and wall resistances, it is

C recommended that it be used to predict the resistance of
' packed spheres. -

Conclusions

A general solution has been presented to predict the

total resistance of a single sphere subject to arbitrary flux -
distributions. Two specific flux distributions have been ex-

amined; expressions for the temperature distribution and B
thermal resistances are presented, and tabulated values of the
resistances are presented, over the practical range of inter-
est of the parameters. The normalized results were compared —
with the well-known half-space solutions, as well as the two-

zone model proposed by Yovanovich. -
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