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Abstract

Analytical solutions for conduction in basic
cells of regularly packed spheres are obtained.
The basic cells are shown to consist of a number of
effective contact regions. The influence of pack-
ing, mechanical load, and gas pressure is deter-
mined. Experimental results for a single contact
region, and for an FCC basic cell, are in excellent
agreement with the analytical results at all mech-
anical loads and gas pressures for alr, argon, and
helium,

Nomenclature

a = contact radius

A = cross—sectional area of a basic cell
D = sphere diameter

E = Young's modulus

F = mechanical load applied upon a basic

cell (PaA)

F1,Fy,F3 = constants defined by Eqs. (23),(24),
and (25)

h = height of a basic cell

kg = apparent conductivity of a basic cell,
or of regularly packed spheres

ke = effective conductivity of a contact
region

kg = local gas conductivity

kge = effective gaseous conductivity associ-
ated with a contact region

k;e = non-dimensional effective gaseous
conductivity associated with a contact
region

kg = solid conductivity

kge = effective solid conductivity associated
with a contact region

L = non-dimensional contact parameter
(D/2a)

M = modified Knudsen number (2aB8A/D)

N = normal load on a contact

P = gas pressure

Pa = apparent pressure due to mechanical
loading

Py = standard gas pressure

Pr = Prandtl number

Qg = total heat flow through the gaseous
medium associated with a contact region

r = radial distance from the contact center

Re = thermal constriction resistance

Rep = thermal constriction region resistance

Rg = thermal resistance of the gaseous
medium

Ry = radiation thermal resistance

Rg = thermal resistance of the solid medium

R = total resistance of a basic cell

T = mean gas temperature

*
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To = standard temperature

AT8 = overall temperature difference of a
contact region

x = non-dimensional radial distance (r/a)

Greek Symbols

= accommodation factor [2(2 - al)/al]

= accommodation coefficient

= gaseous parameter [2y/((y + 1)Pr)]

= ratio of specific heats (CP/CV)

= local spacing

= non-dimensional local spacing (§/a)

emissivity 2 1/3

= quantity defined by [1/(3P,(1~v")/E

outer radial limit of the gas region

non-dimensional outer radial limit of

the gas region

= mean free path of a gas molecule

= mean free path of a gas molecule at
S.T.P.

= Poisson's ratio

solid fraction

= Stefan-Boltzmann constant
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Introduction

Packed beds have a variety of applications in
thermal systems. They provide a large ratio of
solid surface area to its volume. This property is
useful in application such as catalytic reactors,
heat recovery processes, heat exchangers, heat
storage systems, etc. Packed spheres are also used
as an insulation material, acting as a radiation
shield as well as a convection heat flow suppres-
sant, at the expense of an increase of conduction
heat transfer.

The heat transfer characteristics of such beds,
and particularly the conduction contribution, was
the subject matter of a number of studies. The
previous work on this subject may be divided among
three groups of investigators. The first group
[1-4] simplified the analysis by transforming the
complex geometry of spherical particles into series
and parallel arrangements of macroscopic rectan-
gular volumes of gas and solid. One dimensional
heat conduction analysis of such geometry was then
performed. When the dependence of the gas con-
ductivity on the Knudsen number was included, it
was assumed uniform, and was evaluated at some
equivalent spacing obtained from geometry alomne.

A second group [5-8] has taken the problem further

by retaining the actual geometry, i.e., spheres in

contact, but the local gas conductivity was assumed
uniform over the entire gas region, which actually

varies in thickness. In both cases the solid con-

striction resistances, when incorporated, were



added in parallel to the other resistances. The
third approach [9-10] was to solve the problem
numerically. The geometry was retained and the gas
conductivity was allowed to vary locally. The
numerical solution was relatively successful, al-
though mechanical load and packing were not con-
sidered

In the present work, a detailed analysis of
individual basic cells representing regularly pack-
ed spheres accompanied by experimental results is
presented. This approach enables the isolation
and analysis of the parameters, namely, mechanical
loads, packing, gas pressure and solid gas conduc-
tivity ratio. Constriction always occurs when the
solid to gas conductivity ratio is relatively large
(which is true in most cases). It is obvious that
the above condition 1s necessary for application of
this model. The analysis of a single contact
region includes the local variation of gas conduc-
tivity due to the variable thickness of the gas
region, and the bending of the heat flow lines with-
in the solid. A constriction of heat flow into the
area in the vicinity of the solid to solid contacts
both within the solid and the gas enables one to
model the basic cell as an arrangement of thermal
resistances associated with contact regions.

Analysis

A. Contact Region

Consider two identical spheres in contact as
shown in Fig. 1. The two solid surfaces are separa-
ted by a gaseous region varying in thickness from
zero at the contact to some value, §,, at the outer
adiabatic boundary Fig. 1. The contact radius is
a; the sphere diameter is D. Tj, and Tp, are tem-
peratures of the two spheres far enough from the
contact so as to be assumed relatively uniform.
T3(r) and Ty(r) are the temperature distributions
at the solid gas interface. The above is only a
particular case of a contact region. The following
analysis could be applied to different contact
regions such as a sphere-flat contact (which is
investigated subsequently), a cylinder-flat contact
region, a contact region between a ball bearing and
its race, etc.
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Fig. 1 Contact region between
two identical spheres

Heat conduction is assumed to take place
through the solid to solid contact region and
through the gaseous layer in a parallel configura-

tion. The validity of this assumption has been
previously established by other investigators
[8,13].

For a relatively small contact to sphere dia-
meter ratio (2a/D << 1), the constriction resist-
ance is well approximated by that of an isothermal
circular contact on a half space, [11] and is given
by:

_ 1
Rc 4ksa (1
The contact radius, a, is evaluated by means of the
well-known Hertz relation for elastic contacts,
which, for two spheres, reduces to:

- [(3/8)ND(1-vD)y/E1Y3

2
where N is the normal load, E is Young's modulus,
v 1s Poisson's ratio, and D is the diameter of the
sphere.

The overall thermal resistance of the solid
phase consists of two such constrictions and, hence,
is given by:

R = —— (3)
s
where L = D/2a.

for the effective solid conductivity, kse
on the basis of a cube of side D,

The following result is obtained
, defined

-2 )

Equation (4) is strictly valid only under
vacuum conditions, but, the contribution of the
s0lid conduction to overall conduction diminishes
as the gas pressure increases, and hence the error
incurred using Eq. (4) when calculating the solid
contribution to the overall effective conductivity
is small. The thermal resistance of the gaseous
phase is defined based on the overall temperature
difference (similarly to the solid resistance)

AT
a
R =—— (5)
g Qg
where AT T2a, and Q, is the total heat

flow through tﬁe gaseous region.

The heat flow lines in the gaseous region are
assumed to be straight and perpendicular to the
plane of contact. This assumption is valid in the
proximity of the contact where the two solid sur-
faces are nearly parallel to the contact plane,
and it is demonstrated later that the major portion
of the gaseous heat transfer occurs through this
region. The total heat flow through through the
gas is then given by the following integral:

4
- AT(x)
% = L %) 56

2nrdr (6)

where kg(r) is the local gas conductivity depending
upon the local spacing, 6(r), and the interstitial
gas mean free path, A. The local gas conductivity
is assumed to be equal to the conductivity of a
uniform layer of gas of thickness equal to the
local spacing, §(r), consistent with the previous
assumption of straight heat flow lines in the
gaseous region. The local conductivity of the
gaseous region is given by [8]:
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o
kg(T) = 1+ aBA/6(D) %

where ko is the conductivity of the gas under con-
tinuum conditions at S.T.P., and o the accommoda-
tion parameter is defined as follows:

1 2=

1

P (8)
1

where oy is the accommodation coefficient, and 8 is
defined by:

1 3]
g = P
r

N
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Y being the ratio of specific heats, and Pr is the
Prandtl number. The mean free path, A, is given in
terms .of the mean free path at S.T.P., Ao’ as:

(10)

The local spacing for two spheres in elastic
contact is given by the following [12]:

8(x) = 2‘[\""!@/2)2 a2 Voo e

2"
2 (2 - /)Y st am +
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The local temperature difference, AT(r), is
taken as the average of the following two cases:
(i) The temperature distribution on the gas-solid
interface is induced by the heat flow through the
solid-solid contact under vacuum conditions. This
was used by Yovanovich in his coupled model [11].
The local temperature difference for this model is
given by the following expression:

24T N
AT, (r) = ( - a)tan_l /-1 a2

(ii) The temperature distribution on the gas-solid
interface is induced by parallel heat flow through
the gas as well as the solid. This was used by
Kunii and Smith [6] and Kaganer [8]. Incorporating
the local variation in the gaseous conductivity
given by Eq. (7), the following expression for local
temperature difference is obtained:

(11)

AT,
(Dlﬁ(r)—l)kg(r)/ks+l

ATZ(r) = (13)

The actual temperature distribution is some-
where between the two above. Since ATl(r) and
AT7(r) do not differ substantially, the average is
taken to yield:

AT
p(r) = 2 [(Z/W)tan_l Sl -1 +

1
@76 -DE @) /k, + 1 ] (14)

Substituting Eqs. (7), (11), 14), and Eq. (6)

into Eq. (5) and defining the effective gas con-
ductivity in a similar manner to the solid effec-
tive conductivity (i.e. based upon a cubic cell of
side D), there results [15]:

k = 1{2'1 (15)
ge L
where the integral is defined as
5
1 =?l 1, dx (16)

and the integrand is

I =X tan_l /;2-1 + - (r/2)x
* * *
TS (x) + ML (k /e )[2L-8 ()] + [ (x)+ML]
a7
The non-dimensional parameters are defined as
follows:
* *
x=r/a; ¢ =g/r; § (x) = §(r)/a (18)
and the modified Knudsen number is
M = 2aBA/D (19)

The value of the integral was obtained numerically
[15].

The integral I, may be viewed as.a non-dimen-
sional heat flow per unit length in the radial
direction, r. Fig. 2 shows the variation of I, as
given by Eq. (17), with the parameter M.

o1 50 100

Fig. 2 Local variation of heat flow
per unit length of radius.

For small M, corresponding to relatively high
gas pressures, the main contribution to I is due to
a very small region in the vicinity of the contact.
This is observed in Fig. 2 where I, reaches a maxi-
mum value when x is small. For this case, the gas
conduction is of relative importance compared with
solid conduction. At large values of M, I, de-
creases and flattens suggesting that the entire gas



reglon contributes approximately equally to the
overall gaseous heat flow, I; but this occurs at
lower gas pressures where the solid conduction
dominates the heat transfer. This observation
suggests that the conduction through the inter-
stitial gas of variable thickness should be modelled
as constriction heat flow through a small gas

region associated with each contact.

Figure (3) compares the effective gaseous con-
ductivity obtained from Eq. (15) with the conduc-
tivity obtained from an analysis by Kaganer [8], in
which the conductivity of the gas was evaluated at
the constant spacing of 2D/3. The present model
improves upon the previous analysis by allowing for
the region where the gas is rarefied (M 5_10'1) to
move towards the contact area (x=1) with increasing
gas pressure. This results in a monotonic increase
in conductivity over a very wide range of M. It
differs substantially from the behaviour of a uni-
form gas layer of 2D/3 thickness, in which the
variation of k¥ e 1s more rapid in the range
107 < M < 10' and furthermore does not allow for
increase in the gaseous conductivity beyond a value
of M approximately equal to 10‘2, Fig. 3.
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Fig. 3 Comparison between the present model
and one employing a constant local gas
spacing (Kaganer [8])

Figures 4 and 5 demonstrate the effect of the
solid to gas conductivity ratio, kg/ky, and the
sphere to contact diameter ratio, L. Because the
temperature difference across the gaseous region
decreases with the ratio kg/k,, the k*e curves do
not collapse into one, which would mean that ky is
directly proportional to k,. The effective gas
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Fig. 4 Effect of solid to gas conductivity
ratio, kg/k,, on effective gas
conductivity
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Fig. 5 Effect of sphere to contact diameter
ratlo, L, on effective gas conductivity

conductivity k*e at small values of M is larger
than unity becduse the relatively highly conducting
solid allows the heat to flow through the very thin
gas region adjacent to the contact area. The
effective gaseous conductivity increases with a
decrease in the contact to sphere diameter ratio
because the maximum value of I, increases and moves
inward.

Since the solid and gaseous effective conduc-
tivities were based on the same cell dimensions
and are thermally in parallel the overall effective
conductivity, ke’ is simply the sum of the two, and
therefore,

- =1
kg = kg + ko =T Gk + Kk T)

(20)

B. Basic Cells

Simple cubic packing (CP), body-centered close
packing (BCC), and face-centered close packing
(FCC) are particular examples of regularly packed
spheres. These three packings are chosen as the
subject of consideration, although other regular
packings with intermediate contact numbers and
solid fractions, p, exist.

Analysis of basic cells representing CP, BCC,
and FCC packings was presented by Chan and Tien
[14]). Their analysis considered evacuated beds
only, and, furthermore, only a single orientation
of each packing with respect to the macroscopic
temperature gradient. Figures 6a, 6b, and 6c¢
correspond to CP, BCC, and FCC basic cells, respec-
tively. These basic cells represent the particular
orientation of each packing, here designated orien-
tation A, where the macroscopic temperature grad-
ient is in the z direction.

Fig. 6 Basic cells of CP, BCC and FCC
packings in orientation A

Three such orientations, A, B, and C, for the
three packings under consideration, are shown in



Figs. 7a, 7b, and 7c, respectively. The direction
cosines of the macroscopic temperature gradients
are (0, 0, 1), (V2/2, vV2/2, 0) and (/3/3, V3/3,
/373), respectively. These orientations enable
the construction of basic cells which consist of
two parallel isotherms and perpendicular adiabats.

©Fig. 7 Three orientations, A, B and C
for packings CP, BCC and FCC

An example of a cell at an orientation differ-
ent from A is shown in Fig. 8. This cell repre-
sents an FCC packing in orientation C, denoted
FCC(C). The two horizontal boundaries are at uni-
form temperatures, T and Ty, while the six ver-
tical boundaries are adiabatic.
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Fig. 8 FCC(C) basic cell

Each basic cell consists of a number of con-
tact regions, each encompassing a circular solid-
solid contact and an associated volume of gas of a
particular shape, depending upon the specific pack-
ing structure encountered. The heat flow lines
within each gas region become increasingly perpen-
dicular to each contact plane as the solid-solid
contact area is approached. Since the major gas-
eous contribution to the heat flow occurs relative-
ly near the solid-solid contact, the area through
which the gaseous heat flow occurs is transformed
into an equivalent circular area, and, in addition,
the heat flow lines are assumed to be perpendicular
to the contact plane. With this simplification,
the problem of heat conduction in a basic cell can

~

be solved directly in terms of the results presented
earlier for a single contact region.

The analysis of a basic cell proceeds as
follows:
(1) the apparent pressure, P,, on a basic cell is
related through geometry, to the normal load, N, on
a contact. The Hertz relation, Eq. (2), is used to
calculate the sphere to contact diameter ratio, L,
as follows:
F
L = 1

ENCEVIY

73 zn

where F1 is obtained from the geometry of the basic

cell alone. Defining:
1
A= (22)
(32, (1% /E1Y/3
L may then be written as:
‘L = FlA (23)

(ii) the gaseous region area is transformed to a
circular one, and its radius, ;*, is evaluated,
resulting in:

*

r = F3A

The gaseous region area is found by dividing

the sphere surface area by the number of participa-
ting contacts. It should be noted that contacts
perpendicular to the macroscopic temperature field
do not participate in conduction and therefore are
not considered.
(ii1) the overall resistance, Ry, is determined
from the thermal resistance network for each basic
cell, and
(iv) the apparent conductivity of a basic cell, ka’
is obtained incorporating the overall dimensions,

(24)

i.e., the height, h, and the area, A, and is
written as follows [15]:
FZ
ka = Z_{ks + kOI(M,A,kS/kO,Fl,F3)] (25)

The procedure was employed successively for-
each of the basic cells (except BCC(C)), and the
results are summarized in Table 1.

Table 1: Fy, F,, and F, for various basic cells
Basic cell (p) Orienta- F F F
1 2 3
tion
A 1 1 1.00
CP(0.524) B 1 1 0.87
C 1 1 0.75
A 352 353 0.79
BCC(0.680) B 3 3 1.04
ck _— _— _—
A 2%;% 2 0.94
FCC(0.740) B 21/2 2 0.85
C 2 2 1.05

*
not analyzed due to difficulty in constructing a
thermal basic cell.



C. Regularly Packed Spheres

The above analysis yieided apparent thermal
conductivities for three discrete solid fractionms,
p = 0.524, 0.680, 0.740. The dependency of the
apparent conductivity on the various packings and
orientations is manifested through the three con-
stants Fy, Fp and F3. -In the light of the rela-

tively small range of Fg, and its weak influence on

the gaseous conduction, one may use an overall
average value of Fg (F3 = 0.91) for all packings
and orientations. Hence the packings are nearly
isotropic and only the constants F; and Fp are
required to evaluate the apparent conductivity.

The apparent conductivity of regularly packed
spheres with intermediate solid fractions may be
evaluated by interpolation of the results of the
three discrete solid fractions. Second order poly-
nomials were fitted to the values of F; and Fp
given in Table 1, yielding:

10.53p2

Fl(p) - 11.39 + 4.077 (26)

and

F,(p) = 29.950% - 33.22p + 10.18 @n
The above functional relations for Fi and Fp
in terms of the solid fraction in conjunction with
Eq. (25) provide the means of determining the
apparent conductivity of regularly packed spheres

with corresponding solid fractiom p.

Experimental Results and Discussion

A. Sphere-flat Contact Region

Experimental data for a sphere-flat contact
reglon were obtained by Kitscha and Yovanovich [13]
for varying mechanical load and gas pressure, for
air and argon. For a sphere-flat contact regionm,
a special case of the model presented, here, one
can determine,

(i) The contact radius

a = [(3/6)ND(1-v2y/E1Y/3 (28)

and, (i1i) the non-dimensional local spacing:

6*(x) = VLZ— - V£2—x2 + %E [(2-x2)sin_1(l/x) +
-1 - (1/2)] (29)

A small radiative contribution to the overall
heat transfer was observed during the test program.
To account for their heat transfer, the following
thermal resistance was added in parallel to the
gaseous and solid conduction resistances:

R = —21 (30)

T 3
4E1A1F120Tm

where €1, &3, F12 o0, and Ty are the emissivity,
projected surface area, radiative view factor,
Stefan-Boltzman constant, and mean temperature,
respectively. Free convection was demonstrated to
be negligible and is not considered in the present
model.

The experimental and theoretically calculated
values are presented in Figs. 9 and 10. The
agreement is excellent except for relatively small

loads, when L = 115 for air and argon. The dis-
crepancy is believed due to experimental error.
Such results demonstrate that the effect of the
mechanical load and gas properties are well model-
led by the present analysis.
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Fig. 9 Thermal resistance of a sphere-flat

contact region with air at various

loads and gas pressures
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Fig. 10 Thermal resistance of a sphere-flat

contact region with argon at various
loads and gas pressures

B. FCC(C) Basic Model

An FCC(C) basic cell, shown in Fig. 8, was
constructed using 1.25" diameter steel balls. The
cell was placed between two coaxial rods of corres-—
ponding cross section, Fig. 11. The rods were
axially loaded with dead weights to ensure equal
loads on three contacts. Such an arrangement
eliminates the experimental difficulty encountered
due to thermal stresses assoclated with linkages.
The power was supplied by Joulean heating, and the
heat flow through the cell was determined by
measuring the temperature gradient on the sink side
of the cell. Multilayer insulation was used to
render the side walls effectively adiabatic.

l F - CONTROLLED LOAD
HEAT SOURCE —]

CONTROLLED —4
HEAT FLOW-Q T

CELL TESTED
?

/1
KNOWN ~————

CONDUCTIVITY — } MEASURED TEMP. GRAD.

(THERMOCOUPLES )

HEAT SINK

?1 l’;‘ ‘L/
Wi

Fig. 11 Experimental set-up of a basic cell



The entire assembly was placed in a controlled
pressure environment. Low vacuums (1074 to lmm Hg)
were obtained by establishing pressure equilibrium
with a bleeder valve and constant evacuation by a
mechanical vacuum pump. This technique eliminated
the difficulty encountered in maintaining a con-
stant pressure due to unavoidable air leakage into
the system. This is believed to have caused the
discrepencies observed in the sphere-flat experi-
mental data [13] when L = 115.

By applying successively larger loads, the
small radiant contribution to thermal resistance
was effectively defined.

The theoretical and experimental values of
total resistance under vacuum conditions for
various loads are compared in Fig. 12.

30
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Fig. 12 Thermal resistance of an FCC(C) cell
versus mechanical load in vacuum

Figures 13 and 14 show the theoretical and experi-
mental total thermal resistances for air and helium
respectively. The gas pressure ranged from 1071 o
740 mm Hg. The accommodation coefficients were
chosen to fit the test data at the lightest mechan-
ical load. The values for air and helium were 0.9
and 0.4 respectively, which is in good agreement
with values reported in the literature.

The solid thermal resistance varies linearly
with L as seen in Fig. 12. The experimental
results for thermal resistance span a substantial
load range (755}5200). The excellent agreement of
the experimental results with the predicted values
(incorporating radiation) over the entire range
effectively verifies the effect of load in the
present theoretical results as given by Eq. (3).

The total thermal resistance varies gradually
over a wide range of M, as seen in Figs. 13 and 14.
It continues to do so beyond M=10-2 (corresponding
to P 1.5 mm Hg for air, and p ~ 5 mm for helium),
This trend is not predicted by the previous models,
which did not allow for local variation in gas con-
ductivity (see Fig. 3). The experimental total
resigtance varies substantially from vacuum to
atmospheric pressure, particularly at large values
of L, In light of the excellent agreement over the
entire range of gas pressure (or M) the present
model for gaseous contribution to the overall ther-
mal resistance is effectively demonstrated.
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Fig. 13 Thermal resistance of an FCC(C) cell
with air as a function of load and
gas pressure
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Fig. 14 Thermal resistance of an FCC(C) cell
with helium as a function of load and
gas pressure

The solid to gas conductivity ratio, kg/kg, 18
difficult for air and helium (approximately 1800
and 300 respectively). The good agreement for both
packing demonstrates that its effect is well
accounted for by the present thermal model., It
might be noted, though, that the values of kg/ky in
both cases are relatively large which is a neces-
sary condition for application of the present con-
striction model.

Summary

Analytical results for the apparent conduc-
tivity of regularly packed spheres were obtained.
The analysis incorporates the effects of mechanical
load, gas pressure, packing, solid to gas conduc-
tivity ratio and other properties of the solid and
the gas successfully. The results differ markedly
from previous ones particularly in the effect of
gas pressure upon the gaseous contribution to the
overall conductivity. The excellent agreement of
the present analysis with experimental data obtain-
ed with bdsic cells indicates an improvement upon
previous models in so far as regularly packed
spheres are concerned. It is believed that future
work, based on these results, incorporating addi-
tional parameters associated with random packed
beds should be successful.



In addition we may add that the present model
for a contact region could be directly applied to
a wide variety of problems consisting of contacts
between curved surfaces submerged in a stagnant gas.
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