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one arrives at
Ac, = (2/pa UL ) (p¥)* - VP =0 (13)

So far, no distinction has been made between subsonic and
personic speed regimes. Beginning with the next section, the
cussion is restricted to the subsonic flow domain.

Application of the Goethert Rule

The boundary conditions of incompressible free vortex
flow, which correspond to boundary conditions (7) and (13)
of the compressible domain, read

Viom =0 (14)
Acy, = (2/UL) V- VP =0 (1%)

The subscript / denotes quantities in the incompressible flow
domain. )

The question now arises as to which, if any, of the various
transformations that reduce the compressibie potential Eq. (1>
to Laplace’s equation also reduce the boundary conditions of
“the compressibie domain as given by Egs. (7) and (13) to their
equivalent form in the incompressible flow domain. It can be
verified easily that the desired transformation is achieved by
application of the following well-known version of the
Goethert rule:

X, =x/B, yi=y, z,=2, &; =00, B=VI-M (16)

The freestream velocity is kept fixed during the trans-
formation, but the angle of attack changes as tana; =8 tana.
By application of the Goethert rule to Eq. (5), one can show
further that the pressure distributions of both flow domains

‘e related by

where ¢, is obtained from Bernoulli's equation.

it should be emphasized that boundary conditions (14) and
(15) of the incompressible flow domain are applied on the
surface z, =/, (x;, »,), and that boundary conditions (7) and
(13) of the compressible domain are applied on the surface
z=/f(x,y), where

Cp =Cp, /8? an

Si(x, 3 =f(Bx. ¥:) (18)

Numerical Results

The accuracy of the Goethert rule used in combination with
exact boundary conditions involving the mass flux vector was
investigated numerically by calculating the subsonic flow
about planar wing geometries over 2 wide range of angles of
attack. The wing planforms were transformed according to
Eq. (16), and the resulting incompressible flow problems were
solved using a modified version of the numerical technique of
Ref. 3. The computed compressible values of lift coefficient
¢, drag coefficient ¢p, and pitching moment coefficient c,,
are compared in Figs. 1 and 2 with experimentai data of Ref.
5. The coefficients are referred to wing area, freestream
dynamic pressure, and mean acrodynamic chord. The pitch-
ing moment reference axes of the delta wing and the arrow
wing are located at 50% and 64.5% root chord, respectively.
It is shown in Fig. 1 that the characteristics of the deita wing

re very well predicted even at the extreme flight condition of
‘ deg angle of attack and 0.8 freestream Mach number. Drag
@nd pitching moment characteristics of the arrow wing are
shown in Fig. 2 to be well predicted up to 20 deg angle of
attack, although the lift is overpredicted at higher incidences.

For comparison, theoretical data of the lift coefficient ob-

tained from the leading-edge suction analogy of Polhamus?
also are shown; the agreement with the theoretical results of
the method reported in this Note is remarkable.
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Centroidal and Area Average
Resistances of Nonsymmetric, Singly
Connected Contacts

M. M. Yovanovich* and S. S. Burdet
University of Waterloo, Waterloo, Ontario, Canada

Introduction ,

T was demonstrated in a recent paper! that the normalized

constriction resistance AR is approximatcly equal to the
value 5/9 and 84% of this value when 8 is chosen to be the
square root of the contact area and when the resistance in the
first instance is based upon the centroid temperature and in
the second upon the area average temperature. This
remarkable fact was observed for a set of singly connected,
symmetric planar contacts of the form (x/a)" + (y/b)" =1,
with b=ga subject 10 the same uniform heat flux. The
geometric parameter n was allowed to range from n= 1% to
n=oo, thereby covering a variety of shapes which included
astroids, a circle, a square, and near squares.

To determine whether the results of the symmetric study are
general, three nonsymmetric shapes were examined. This
Note describes the method used to obtain the temperature at
arbitrary points and the centroidal temperature for a
triangular contact, a semicircular contact, and an L-shaped
contact. A numerical method was used to obtain the area
average temperature of these contact areas.

Arbitrary and Area Average Temperatures
Triangular Contact Ares :

Figure | shows a singly connected, planar triangular
contact area of base 2g and height 24 subjected to a uniform
heat flux g. The haif-space thermal conductivity is A. The
expression for the normalized resistance based upon the area
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Fig. | Geometric characteristics of the Irianguiar contact.

average temperature and the square root of the area was
obtained and evaluated numericailly by the procedure
described in Ref. 1 for various values of the aspect ratio
a(=b/a). It was found that the average value of AVA
R=0.4525 in the range 0.4<as2. The largest and the
smallest differences in the values were +1.75% and -2.36%
for @=0.8 and 2, respectively. The resistance changed
considerably from the average value for «<0.4 and a > 2.

Figure 1 is used to obtain an exact analytical expression for
the centroidal temperature. The lines joining the centroid
(located a distance 26/3 from the base) to the three vertices
and the three perpendiculars from the centroid to the three
sides form three pairs of identical right triangles.

From the geometry, we obtain the relationship

B=tan~'(//2a) N

‘:rc a=(cd)/{2ad). The three angles subtended at the
troid can be obtained as foilows:

w, =(x/2) -8, w;=ian~'(3 anB) (2a)

WyET~w, ~w (Zb)

Adding the effects of the six triangles, we obtain the following
expression for the centroidal temperature:

TA ) r w T w
; T, ="' sin28 !-[tan(-‘- +-2—') tan(: +F))]

+ Y4 cos8 tn tan(% + ? 3)

where
od="VY; cosB,

The normalized constriction resistance based upon the cen-
troidal temperature and the square root of the contact areais

NA Ry = (\T,/q)V2/sin28 (&)

with (AT, /q) obtained from Eq. (3).
For 0.4 sa <2, it was observed that the average value of A
i R, =0.5421, and the largest and the smailest differences in
values were +1.75% and -2.71% for a=1 and 2,
Tespectively. For a<0.4 and a>2, the difference from the
average value was considerable. In the same range of a, the
average value of R/R, was 0.8348, and the difference from

the average value was insignificant even for a larger range of
.

oe=of =Y sin2f8 ) _

Fig.2 Geometric characteristics of the semicirculsr comtact.
i

Semicircuiar Contact

The second nonsymmetric contact area studied is shown in
Fig. 2. The local and area average temperatures for the
semicircular contact of radius a are obtained using the
procedure discussed in Ref. 1. It is found that AVAR = 0.4610
for this contact area.

To determine the centroidal temperature, we take ad-
vantage of symmetry about the vertical axis and divide one-
half of the contact area into the three areas shown in Fig. 2.
The apex of the right triangle is placed at the centroid, which
is a distance (4a/3x) from the base. The angle w, at the apex is
known to be '

w, =tan "'/ (3x/4) (6)

and, since w, = x/2, we can determine w ;- The contribution of

the triangular area to the centroidal temperature follows
directly?: :

g 4a (t w,
=2 22 pian( X L2 M
Ti= o 77 etan( 5 +3

The contribution of area 2 to the centroidal temperature can
be obtained by means of the following expressions3:

q_ (<
7 2%A L pz dw ®

where, from Fig. 2, we have

py=afv sinu+\/1~u’cos’w] 9)

with y=4/3x. After substitution of Eq. (9) into Eq. (8), we
have, according to Ref. 3,

qa ) sinw,
¥ [ R
’=21rx v(l 7) +E(sin (1=o7cos?ap) v
vsinw,cosw, ]
(I -vicos?w,) " (10)
. Since
. v 1
sinw, = m » COSw,y = m (1

Eq. (10) can be reduced to the foilowing expression*:
T;=(qa/2x\) [v=v(/+v?) " +E(sin~'v,u) ] (12)

where E is the incomplete eiliptic integral of the second kind
of amplitude sin -/ vand modulus .
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The contribution of the remaining area of Fig. 2 is obtained
by means of Eq. (8) and the radius vector:

py=al —vcosw+ (I —-visin‘w) ) 13

||l!1ercforc. after substitution of Eq. (13) into Eq. (8) and
integration, we have

T;=(qa/2x\) [E(v) —v] (14)

where £ is the complete elliptic integral of the second kind of
modulus v.

Adding Egs. (7, 12, and 14) and multiplying by 2 y:elds the
centroidal temperature. Dividing this temperature by the totai
heat flow rate and then normalizing this value yields the
dimensionless centroidal resistance:

1 l2 T 1 a1
)\\/ZR¢=—; :[v&tan(7+—2-tan 7)

. +EGsin~'v,v) +E(W) ~v(I+v?) " (15

Since v=4/3x, Eq. (15) reduces to AVA R, =0.5456. The ratio
of the area average resistance to the centroidal resistance for
this contact area is 0.8449.

L-Shaped Countacts

The desired L-shaped contact is generated by the removal of
a rectangular area (£n) from the lower left-hand corner of a
unit square arca. The origin of the Cartesian coordinate
system is located at the lower left-hand corner of the unit
square. The centroidal and area average temperatures and the
corresponding dimensionless resistances were obtained by

rying £ and » systematically. In this work, £ was allowed to

nge from 0 to 0.5 with increments of 0.10, while n ran from
0 to 1.0 for each value of £, in increments of 0.10. In this
manner, 50 different L-shaped contacts were examined. *

When §=9=0.1, the largest values of the dimensionless
rcsnstances were observed, these being AWAR =0.4733 and.
AA R, =0.5614. The smallest values, A\VA R =0.4424 and
AWA R,=0.5197 were observed at £§=0.5, 0=0.7. The
maximum value of R/R, = 0.8540 occurred at § =0.5, 5 =0.6,
while the minimum value of R/R,=0.8321 was noted at
£=0.5, n=0.9. They differ from the vaiue of 0.8400 by
+1.67% and - 0.95%, respectively.

Summary and Conclusion

We see that, in the range 0.4 <sa <2, both constriction
resistances, R and R, are relatively insensitive to the aspect
ratio and, further, that these trianguiar shapes have con-
striction resistances that do not differ substantially from
the constriction resistances of a «circular contact area
(AWAR=0.4787, A\VAR,=0.5642). For a<0.4 and a>2,
both resistances decrease, and these values no longer can be
considered comparable to those of the circular contact area.
We note that the ratio R/R, is much less sensitive to the
aspect ratio a over its entire range, and that the values agree
closely with the ratio corresponding to the circular contact.
The results of the analysis for the semicircular contact area
are remarkable for two reasons:

1) The normalized resistances are less than 4% different.

2) These resistances are less than the corresponding
.sistanccs for the circular contact; that is to say, the non-

@Pvmmetric contact offers less constriction resistance than the
symmetric contact area.

The L-shaped contact area results are even more
remarkable because, although this contact has no symmetry,
its constriction resistance is very close to that of the triangular
and semicircular contact areas and smaller than that of the
circular contact. Its ratio R/R, is in remarkably good
agreement with the results of the triangular and semicircular
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The results of this study allow us to conclude that one can
estimate the area average temperature (or constriction
resistance) of nonsymmetric contact areas by taking 84% of
the centroidal temperature (or constriction resistance) with an
error less than =1.7%, provided that the contact area is not
too asymmetric. The constriction resistance of nonsymmetric
contact areas, whether based upon the area average or cen-
troidal temperatures, will be less than the corresponding
resistances for the circular contact. The normalized con-
striction resistance A\VA R, is approximately 5/9 for sym-
metric and nonsymmetric contacts when subjected 10 a
uniform heat flux.
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Determination of Pole Sensitivities by
Danilevskii’s Method

James B. Nail,* Jerrel R. Mitchell,t and
Willie L. McDaniel Jr.$
Mississippi State bmversuy, Mississippi State, Miss.

I.. Imtroduction

N control theory, a synonymous term to pole sensitivity is

eigenvalue sensitivity. Several methods for calculating
eigenvalue sensitivities have been presented.'’ In general,
these methods either require an application of Leverrier’s
method? or require the determination of eigenrows and
eigencolumns. '3-*  Although Leverrier’s method has a
theoretically sound basis, it suffers from truncation errors
when implemented on a digital computer. From experience
these authors have found that aumerical results from

Leverrier’s method cannot be trusted for systems roughly .

greater than tenth order.§

The techniques utilizing eigenrows and eigencolumns are
suitable if the sensitivities of only a few eigenvalues are
sought. However, if the sensitivities of several eigenvalues are
required, then the calculation of the needed eigenrows and
eigencolumns can be a formidable task.

In this paper, an alternate approach for calculating sen-
sitivities of poles and eigenvalues is presented. Danilevskii’s
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