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Abstract

The transient thermal behavior of a half-
space whose plane boundary is impervious to heat
transfer, except for a circular contact area, has
been considered. Full transient, numerical sol-
tions are presented for a variety of disk boundary
conditions. The problem was numerically formulated
and solved using oblate spheroidal coordinates. A
comparison is made with existing analyses for the
special case of a constant, isothermal coutact area.
Results are also presented for various flux distri-
butions in which case the surface flux rather than
the disk temperature is prescribed for all time.

Nomenclature

a contact radius

C.V. control volume

Cl—b'cs finite difference (f£.d) coefficients

D constant term of f.d. equation

Fo Fourier modulus, Fo = at/a?

1,3 f.d. nodal indices
number of nodes in the n - direction
number of nodes in the 6 - direction

P heat generation rate per unit volume and
time

q thermal heat flux

Q total heat flow rate

T radial coordinate

Rc thermal constriction resistance

Rc* dimensionless thermal constriction resist-
ance, RC* - Rcka

t time

T temperature

To disk surface temperature

T° temperature evaluated at the 'old' time
step

v volume

z longitudinal coordinate

Greek Letters

[\1 thermal diffusivity
T contact surface area
*
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Ontario
A denotes increment of the accompanying argument
€ transformed variable, ¢ = sinh n
n,® oblate spheroidal variables
n' transformed variable, n' = cos 6
A thermal conductivity
p mass density
Introduction

For almost four decades a number of engineers,
scientists and mathematicians have attempted to det-
ermine the transient temperature distribution within
a half-space whose plane boundary is impervious to
heat transfer except for a circular contact area
subjected to 1) a uniform, constant heat flux, or
2) a uniform, constant temperature.

The investigations can be divided into two
categories: 1) approximate models [3,6,7,9] valid
in a very limited range of Fourier modulus, and
2) rigorous solutioms [1,2,4,5,8,10,11] which yield
a limited amount of information about the entire
temperature field.

Holm [3] appears to have initiated the method
of replacing the circular contact by a hemispherical
contact whose radius is chosen such that under a
constant flux boundary condition and infinite time
its thermal constriction resistance is equal to the
known steady-state isothermal disk resistance.
Davies [6], Clark and Powell [7], and Heasley [9]
also replaced the actual contact area by a hemis-
pherical contact area and solved the diffusion eq-
uvation formulated in spherical coordinates. This
method is approximately valid for long times, but
is inappropriate for short times.

On the other hand, Blok [1] was the first to
attempt to find a solution for the actual geometry
and a constant flux. Posing the problem in cir-
cular cylinder coordinates, and making use of Green's
function for a point source of unit strength, he
obtained an integral expression for the transient
temperature at the center of the contact. This in-
tegral was subsequently evaluated numerically and a
plot of the temperature rise presented.

Lowan [2] used a Laplace transform to obtain
a solution for the uniform flux condition. He did
not attempt to evaluate the complex integralresult-
ing from his analysis.

Oosterkamp [4] also examined the uniform flux



condition. Thomas [5] followed the method of Blok

[1] and obtained a more complex integral expression
for the transient temperature at the center of the

contact. area which is exposed to a uniform flux as

wvell as radiative cooling.

Norminton and Blackwell [8] and later Black-
well [10) were the first investigators to seek sol-
utions to the diffusion equation formulated in ob-
late spheroidal coordinates. Blackwell recognized
that this coordinate system was appropriate for the
circular contact, because the mixed boundary con-
ditions on the plane containing the contact area
make it exceedingly difficult to obtain analytical
solutions in the conventional coordinate systems.
In his first paper [8] solutions were obtained only
for a very long time (Fo > 4), and in the second
paper [10], solutions for very short times (Fo <0.1)
were obtained. These solutions pertain to the con-
stant temperature condition only. The reported ex-
pressions cannot be used to determine the transient
thermal constriction resistance.

Blackwell [10] concluded that, "An exact sol-
ution in closed form of the complete problem seems
impossibly difficult to obtain, and, if required,
the obvious way to improve on these results is by
means of a full numerical treatment".

Keltner [11] in a recent note reported on an
approximate solution for the isothermal boundary
condition using the heat balance integral method in
oblate spheroidal coordinates.

The objective of the present paper is to ob-
tain a complete solution of the transient field and
the thermal constriction resistance of a circular
contact area subjected to various boundary con-
ditions. The resistance will be determined by
means of a finite-difference solution of the dif-
fusion equation expressed in oblate spheroidal co-
ordinates.

Mathematical Description

Problem Statement

We consider the thermal constriction resist-
ance to transient conduction from a eircular area
placed on the surface of a half-space. Initially
the temperature everywhere within the half-space is
2ero. The surface of the half-space outside the
countact area is impervious to heat transfer for all
time, while the contact area will be subjected to
various boundary conditions.

When the transient temperature field has
been determined subject to a prescribed boundary
condition over the contact area, the average temper-
ature of the contact area as well as the total in-
stantaneous heat transfer rate through the contact
can be calculated. By means of the average temper-
ature and the total heat flow rate, the dimension-
less transient constriction resistance can be det-
ermined as a function of the Fourier modulus.

Differential Equation and Boundary Conditions

To put the problem into perspective, the
governing differential equation and the boundary
conditions will be given in both circular cylinder
and oblate spheroidal coordinates.

If we assume the temperature field to be axi-
symmetric, the diffusion equation in circular cylin-
der coordinates can be written as

2 2
Erim s
ar2 3z2

Equation (1) will be subject to the following in-
itial and boundary conditions:

i) t=0,2>0,r>0; T=0

11) t>0,z=0, 0<r<a;

one of: a) temperature is uniform, T = To
b) q = q(r) including the special case

where q = = (2)

‘"82

114) t >0, z =0, r > a, surface is in-

sulated, %% =0

W) >0, 22 + 22 + w, T+ 0

v) t>0, =0, 3T/3r = 0.

Since it is not possible to obtain a com-
plete analytical solution to Eq. (1) because of
the mixed boundary conditions, it is advisable to
transform this equation to oblate spheriodal co~-
ordinates using the relationships:

r = a cosh n gin 6
3)

z = a sinh n cos 8

Equation (1) then transforms into the equivalent
diffusion equation [12}:

2 2
1 —aT+tanhn-a—T+—aT+c059%'e£
aZ(cosh2n-sin26) | an2 an 462
1l 3T
s 4)

Equation (4) could have been derived by means of a
heat balance on a typical elemental volume formu-
lated in oblate spheroidal coordinates.

The initial and boundary conditions now be-
come:

i) t=0,0<n<= 0<0<n/2; T=0

ii) t>0,n=0,0 <8 :_w/2;

one of a) T = To

b) q = :—:-:%ﬁ'g_: = q(8) and including the
special case where q = -9; (5)
na

111) :>o,e-,/2,z>o;%-o
iv) t>0,n+=» 0<98 <£n/2; T+ 0

9T
v) t>0,6=0,n>0; 36" 0



Thermal Constriction Resistance

The transient constriction resistance is
defined as the average temperature of the contact
area divided by the instantaneous total heat trans-
fer rate through the contact:

J T dr

1
R = T (6)

where T' is the contact area. For the circular con-
tact, T = ra? and the elemental area is

dl = 2nrdr = 2na2 sin 6 cos 6d6 (7)
If we further define a dimensionless constriction
resistance RC = R ka, then Eq. (6) with Eq. (7)
yields two exXpressions:

a
J Trdr
¥ .l 00 (8)
c ma gra
-3T rdr
o 92
or equivalently,
m/2
J T sin 6 cos 6d®
*.l' 9
R =T T/2
-3T sin 640
[s] an

Since equation (9) is valid for the solution ob-
tained by means of oblate spheroidal coordinates,
it will be used in all subsequent calculations.

Coordinate Selection for Numerical Solution

Due to the inability of present analytic
methods for providing a solution to the governing
differential equation (1) or (4) and boundary con-
ditions (2) or (5) of the problem under consider-
ation, a numerical solution was sought to describe
the thermal behavior of the problem. The finite
difference method of solution was used in this an-
alysis.

If the finite difference spatial discretiz-
ation of the governing differential equation is per-
formed in either the circular cylinder or cartesian
coordinate system, the discontinuity occurring in
the thermal boundary condition specification at the
disk outer edge for all time t > 0 gives rise to
considerable numerical difficulty. This is due to
the second order truncation error inherent in the
expansion of the conduction equation which cannot
adequately approximate the large adjustment of the
thermal flow field in the vicinity of this discon-
tiouity. Extremely fine numerical detail must be
used to adequately describe the thermal behavior in
this region. While a sufficiently large computing
facility may allow for a sufficient degree of de~
tail at the expense of considerable additional and
unjustified computer time, our experience indicates
that the numerical solution of this problem is not
feasible at present.

It has been shown [12] that for the special
case of steady-state heat transfer from an isother-

thermal disk the problem and solution become one-
dimensional if oblate spheroidal coordinates are
used in the formulation of the problem. While this
degree of simplification cannot be achieved forother
boundary conditions and indeed not even for an iso-
thermal boundary condition if transient behavior is
considered, it is expected that the flow of heat in-
to the semi-infinite region will maintain a domin-
ant flow direction which will be near that of the
steady-state heat transfer. This hypothesis has
been used successfully to advantage in reference
[13] for steady-state, finite-difference solutions
with arbitrary flux distributions over the contact
area.

The general formulation of the finite differ-
ence representation of the heat conduction equation
in general orthogonal curvilinear coordinates devel-
oped in references [14] has been used in this analy-

sis to determine the finite difference equations
governing the heat transfer within the discretized

spatial domain. For the reasons mentioned above,
attention has been directed to the oblate spheroidal
coordinate system.

Finite Difference Formulation

With an arbitrary control volume centered
about a point in space characterized by the not-
ation (i,j), figure 1, 1 and j shall be used to
indicate the finite discretization of space in the
n and 6 directions respectively. For uniform spac-
ing in each direction independently, successive nodes
in the n and 6 directions will be incremented by
amounts An and A6 respectively. Note that these
increments do not represent the physical distances
separating adjacent nodes but merely the change in
the respective coordinate value between these nodes.

An energy balance for an arbitrary control
volume with a total source strength PAV, and cen-
tered about nodes (i,}) can be written as

14\
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Fig. 1. Problem Geometry in Oblate Spheroidal

Coordinates.
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where due to the axi-symmetric nature of the pro-~
blem only four heat flow rates have been considered.

According to reference [14] this energy bal-
ance can be expressed in terms of the nodal temper-
atures neighboring node (i,j) by the equation
+ Cy

= +
c T C, C3

i3] Ti—l,j Ti+1,j Ti,j-l

+ C, 11)

Tyg41 * D

vhere after some manipulation and division by com-
mon factors the coefficients can be reduced to

€; = 1/(4n)2 - tanh n,/28n)

Cz = 1/(4n)2 + tanh n,/24n)

cot SJ/(ZAG)

Cy = 1/(26)2 + cot 6,/ (208)

C3 = 1/(48)2

(12)
D = (cosh?n, - sin? @ )T° / (AFo
( ny j) 1,4 (AFo)
PAV
+ ivalent
2n ka cosh n; sin 6, &n 40 courcs taren
4
= 2 - 2
Cs n£1 Cn + (cosh ny sin ej)/AFo
where AFo = et and a = —Ji'.
a2 pC
P

In the above the superscript (o) has been
used to indicate that the quantity of interest
should be evaluated at the time step immediately
preceding the one under consideration.

Boundary Conditions

Having determined the nodal coefficients for
the generalized internal node, we consider now
those special control volumes which have one or
more surfaces contacting physical boundaries of the
total thermal system. The boundary control volumes
of concern in this analysis and their associated
thermal boundary conditions are illustrated in fig-
ures 2(a) - 2(d). Only those coefficients corres-
ponding to inter-nodal links crossing a boundary
will be considered here since only they will have
their values altered by the presence of the bound-
ary.

(3)6.0

Due to the problem symmetry about the verti-
cal axis, the line defined by the equation 6 = Q
will represert a zero flux boundary. This con-
dition is reflected by the statement that

Qi’j_;i =0 (13)

i=1

The effect of this condition on the finite
difference equation (11) is that we must set

C3 =0 (14)

(b) 8 = n/2

This boundary is also a zero flux boundary by

its definition in the problem statement., For this
boundary then we set
Cy,b=0 (15)

() n=+ o (n=28)

For this boundary, illustrated in figure
2(c), a temperature is prescribed and maintained
for all time for n + ». It was found numerically
and can be illustrated analytically that it is suf-
ficient, for the accuracy of the present solution
to take n = 8 to be the numerical equivalent of
n +> =, For convenience a value of n = 8.5 was used
in this analysis. In this manner this boundary
condition requires no special treatment other than
to ensure that the temperature for all nodes
(I+1, §) are assigned and maintained at the ap-
propriate value.

d n=o0
(i) Specified flux

The heat flux from the disk surface into the
control volume is given by

46
Gj + 2

%y * e |

%
This represents a rate of heat addition to
the control volume and its direction need not be
specified. The influence of this boundary conditim
can then be included simply by the assignment to
these control volumes of a total source strength of
equivalent magnitude. Thus the assignment is made
AB

Bj + 2

q (6) sin (20) de
A8

q (8) sin (26) de (16)

ng

PAV = na2 J an”

3

and the constant D of equation (11) becomes

D= (coshzni - sinzej) T; j/(AFo)
BJ+A9/2

7 )Andé J q(8)sin(29)de

+ 2kcosh(An/2)sin(6j

(18)

SJ—AO/Z



Including the effect of this condition in
this manner does not involve directly the temper-
ature gradients at the disk surface so that a fur-
ther inclusion of the coefficient C; in our nodal
equation would entail a redundant specification of
Q%,j' To avoid this we set

Cy =90 a9

for these boundary nodes.

(11) Temperature specified

In a similar fashion to the condition for
n + =, this condition requires no special consider-
ation except to determine the appropriate value of
C; for the corresponding nodal equations. For this
set of control volumes the coefficient C; can be
taken as

¢, = Z[L_tnnh gm/zz] (20)

an2 2An

In each of the cases considered above, the
central nodal coefficient, C_, is to be determined
from equation (12). &

0‘0"2_]
Ti.uz_i.o

oion'j
Q.
oi'j-Vg =0 i, ]-'Q

Q,jew2 Qj,jev2

Q_va:
Qi-Vl_j vz

a) C.V. along 80 c)CV. ot > o

Qj,j-v2

Qisvz, j

Qj, j-v2
Qo2
Qi jel2

Qi-v2, j (spacitied)
b) C.V. on disk (5 +0)

Qi,j0V2'°
d) C.V. outside disk(#°w/2)
Fig. 2. Boundary Conditions

Numerical Solutiomns

In the numerical solutions of the transient
thermal behavior for heat flow from a circular disk
conducting to a semi-infinite medium, 8 grid arrange-
ment was selected which has 20 gpatial increments
in the n-direction and 10 spatial increments in the
g-direction for the cross-section of figure 1. Ex-
perience with the steady-state solution of this
problem [13] has indicated that the error inherent
in this grid arrangement will be less than two per
cent for the boundary conditions under consider-
ation.

The tridiagonal matrix algorithm was applied
on a line-by-line basis throughout the discretized
spatial domain to effect the field solutions. Suc-
cessive over-relaxation was used with a relaxation
factor of 1.5 at each time step in the solution.
Experience with the steady-state solution has indi-
cated extremely rapid and stable convergence char-
acteristics when this method is used [13].

An estimate of the time-dependent error is
difficult to establish for this problem, however,
since there are presently no rigorous solutions
available encompassing the complete range of the
Fourier modulus considered to be relevant to the ap-
plication of these results. A check was incorpor-
ated into the solution algorithm to minimize the
propagation of time-dependent errors and the excel-
lent agreement obtained between asymptotic steady-
state results and the exact solution for these two
boundary conditions suggests that this check was
successful in preventing the propogation of signifi-
cant time-dependent errors.

The check was arranged such that for each
time sub-interval considered,a tentative solution
was obtained for the 'mew' Fourier modulus. This
sub-interval was then halved and a new estimate ob-
tained for the new Fourier modulus through the use
of an intermediate time plane. If the two solutions
thus obtained agreed favorably the latter one was
accepted as the solution for the new time plane.
I1f, on the other hand, an unacceptable agreement was
obtained the latter solution was maintained and com—
pared with the solution resulting from a further
halving of the time scale increment. This procedure.
was continued until an acceptable agreement was ob-
tained and the most recent solution was accepted as
the solution for the time plane of interest. The
criterion used for solution acceptance was that the
maximum difference in temperature at any point in
the field between the most recent two trial sol-
utions be less than 5.0 percentwhen normalized with
respect to the change in temperature occurring at
that location between the two time planes under
consideration.

Results

Figure 3 shows thermal resistance as a func-
tion of Fourier modulus for five different disk heat
flux specifications, namely,

i) the isothermal disk
i1) uniform heat flux (q = 100)

114) q = 200 cos? (8)

iv) q = 63.67 tan (8)

and v) q = 50 sec (©)

All flux distributions were normalized so
that the total thermal loading was the same. The
first two cases were chosen because they represent
the two classical solutions of this problem. In
both cases the steady-state resistance is known
analytically and in the case of the isothermal disk
considerable attention has been given to obtaining
approximate analytical solutions for the transient
resistance. The steady-state resistance for case
three is also known [13], but more importantly it
represents a thermal loading such that the steady-
state resistance is above that of the constant flux
case. The fourth flux distribution yieldsa thermal
resistance below that of the isothermal disc for
steady-state conditions. The sec 6 distribution 1s
the steady-state flux distribution for the igsother-
mal disk.
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Fig. 3.

The numerical solutions yield asymptotic
long time thermal resistances in the first three
cases which are R* = 00,2545, 0.2720 and 0.2919,
respectively. Thése correspond to steady-state
values whichare within 1.8% 0.7% and 1.3% of the
exact values respectively. The fourth case yields
R* = 0.2402 which is within 0.7% of the numerical
vdlue obtained from a purelx steady-state solution,
and the fifth case yields R” = 0,2490 which is
within 0.5% of the true valfie. We note that sol-
utions extend over a large number of decades and we
have presented the solution only for the range of
practical importance. As a comment on the methods
of error control used in the generation of the num-
erical results we note the accuracy of the steady-
state solution, the fact that the solution satisfies
the initial condition T = 0, R* = 0 and thirdly the
monotonic smoothness of the intermediate solution.
We expect that the local error at any Fourier mod-
ulus will be less than 1.8%.

Discussion

The comparison of the present results with
the results of the workers discussed in the intro-
duction are now considered. Unfortunately, compari-
sons with field temperatures are limited since in
many cases no direct method is given to calculate the
field temperatures at specific spatial locatioms.
Conversely, Blackwell's analysis yields field temp-

Dimensionless Resistance vs. Fourier Modulus for the Various Disk Boundary Conditions

eratures at arbitrary spatial points but the re-
sults cannot be used to calculate the thermal re-
sistance.

Norminton and Blackwell's [8] long time sol-
ution is shown in figures 4 and 5 compared to the
present numerical results. Four field positions
have been chosen corresponding to node points (n,8)
given by (0.2125, 7/40), (1.4875, n/40) in figure 4
and by (0.2125, 19 w/40), (1.4875, 19 7/40) 4n fig-
ure 5. The results of Norminton and Blackwell were
computed by using the equations givenin their paper
noting the difference in coordinate definition where
their coordinates e€,n’ are related to the present
n,6 by the relations e= sinh (n) and n' = cos 6.
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Fig.4. Comparison of Present Results with Ref. [8

10] for 8= /40, n= ,2125 and n = 1.4875.
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Fig. 5. Comparison of Present Results with Ref. (8,

10] for & = 19n/40, n = .2125 and n = 1.4875.

It can be seen that the long time approx-
imation yields excellent agreement as Fo + « and
that the range of agreement depends on the distance
from the contact. The authors suggested that when
Fo/e? 1.0 the error of their approximation should
be less than 10%. The present results essentially
confirm this and show a difference of = 10X for
(0.2125, 19 /40) and = 1% for (1.4873, 19 w/40)
when the condition Fo/e? =1 is imposed. The differ-
ence is slightly less for the results of figure 5
when 6 -~ 0. In general the stated validity of the
long time expansion for Fo 2 4 is supported by the
present results.

Also shown on these figures (dashed line)
is Blackwell's short time solution [10]}. It is

cally correct as ¥o * 0 it does not agree with the
present results for the range of variables shown.
Our present results showed that agreement was pos-
s’ble only for Fourier modulii much less than

0.001 which corresponds to temperature ratios of a
similar order. The validity of the numerical re-
sults are certainly in question for these orders of
magnitude of temperature and since such temperatures
are beyond any conceivable practical use the matter
was not pursued.

We now turn our attention to the variation
of dimensionless resistance with Fourier modulus,
figure 6., Direct comparisons for these reults are
difficult since, in spirit, the apparent attempt of
the several workers discussed at the outset was to
force their resistance to an asymptotic long time
value of that corresponding to an isothermal disk.
However, the analyses generally rely on specifying
the heat flux on some intermediate boundary, on a
hemisphere for example. The resulting transient
solution is therefore representative of a hybrid
isothermal-constant heat flux problem.

The true fully transient isothermal solution
is the case where temperature is specified on the
disk and the heat flux is transient. The compari-
son most representative of the hybrid analytical
approximation is case v) where the heat flux equiva-
lent to that of the isothermal disk in the steady-
state is prescribed on the disk. The application
of such a heat flux for all time, however, will not
permit the disk to be isothermal except in the
steady state.

Both results are compared to the results of

re~dily apparent that although it must be asymptoti- Oosterkamp [4}, Holm [3] and Heasley [9]. As far
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as known, solutions for the transient resistance
for the other cases studied here have not been re-
ported by other workers so that additional compari-
sons are not possible.

Conclusions

The full transient solution for the re-
sistance to heat flow of a circular disk supplying
heat to a half-space has been formulated and solved
numerically for a variety of disk heat flux distri-
butions. The results are presented in figure 3.

The solution for the classical case of an
isothermal disk has been compared to several approx-
imate solutions available in the literature. It is
concluded that the general 's-curve' characteristics
of the true solution are displayed by each of the
approximate analyses considered. However, in pre-
dicting the dimensionless thermal resistance cor-
responding to any Fourier modulus using these an-
alyses may lead to considerable error. This error
varies depending on the Fourier modulus under con-
sideration and the approximate solution used.

In the region where Fo < .01 all the ap-
proximate solutions are poor and errors of greater
than 100% can easily be found, while moderate errors,
in the order of 20%, are found in the mid Fourier
modulus range. Since solutions are hinged at the
known steady-state values, lower errors are found
for Fo > 10, going to zero as steady-state is ap-
proached.

An examination of the available solutions
indicates that Holm has provided the approximate
solution of greatest utility. Figure 6 illustrates
the close agreement of Holm's results with the pres-
ent solution for all Fo 2 _02. Agreement is within
approximately 5% throughout this range of practical
utility.

The present analysis, in addition to determ-
ining the dimensionless thermal constriction resist-
ance will also provide the field temperatures of the
system at each Fourier modulus considered. This in-
formation, though not reported here, can then be
used to establish 'penetration depth' versus Fourier
modulus relationships, or 'time-to-temperature' ver-
sus temperature relationship for fixed field loc-
ations. This information is of importance in the
analysis of composite systems.

Also presented in this work, in additiom to
the isothermal disk full transient solution, are
solutions corresponding to four disk heat flux dis-
tributions. These distributions were applied over
the full Fourier range and represent cases whose
steady-state solutions exhibit considerable vari-
ation from the classical solutions.

A unique feature of the finite difference
solution technique is the use of oblate spheroidal
coordinates as the basis for modelling the heat
flow. In this system the steady-state, isothermal
disc problem becomes one-dimensional. Although all
other cases (including transient isothermal disk)
are two-dimensional, the coordinate system 1is'quasi
natural' and considerable savings can be realized
through its use. This is reflected in the numeri-
cal solution of the problem by a decrease in the
computational time required for solution. In ad-
dition, the coordinate system can naturally account
for the discontinuity of heat flux occurring at the

disc outer edge and will ultimately lead to a smal-
ler truncation error since the coordinate system
flows more naturally with the heat near this dis-
continuity. )
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