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Abstract

A formal, closed-form solution for the constriction resis-
tance of a circular annular contact on a half-space has been
obtained for the constant-flux boundary condition. The solu-
tion is valid for all values of the geometric parameter. A
simple, approximate solution is presented for radii ratios
very nearly unity. The results of the analysis are compared
with the approximate solution of Smythe and the analytical-
numerical solution of Cooke.

Nomenclature

>

(A\) = function defined by Eq. (5)

= inner radius of annular contact

= outer radius of annular contact

= capacitance, Eq. (1)

complete elliptic integral of the second kind
complete elliptic integral of the first kind
thermal conductivity

total heat flow rate

heat flux

thermal constriction resistance, Eq. (12)
dimensionless constriction resistance (kbR)
temperature

average contact area temperature, Eq. (7)

s 2 = polar coordinates
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T = contact area
Y = dimensionless parameter (e/x) _
£ = dimensionless radii ratio (a/b)
g5 = dielectric constant o
K = dimensionless parameter (a/x), modulus of E and K
K' = complementary modulus with respect to K
(= Y1 - ¥2)
A = wvariable in temperature distribution, Eq. (5) A
] = constriction parameter (= dimensionless resistance) -
X = defined by Eq. (2)
Subscript e
a = annular e
Superscript 5
T = isothermal -
Introduction

The thermal resistance across a joint consisting of a ;
solid or hollow, metallic 0-ring in elastic contact with two o
large smooth flatsl is of some interest to aerospace thermal
designers. The maximum resistance will occur in a vacuul
environment when radiative transfer 1is negligibly small. The
contact formed at the interface between the O-ring and one of
the flats due to elastic deformations will be a circular
annular area having radii a, b (a < b). It can be shown .
using elasticity theory that the ratio a/b will be very nearly -
unity in cases of practical interest. It is required to de-
termine the thermal constriction resistance due to such a
contact when there is no radiative transfer inside or outside

the contact area.

that one can use the analogy between

It is well-known fact
ics) and conduction to

electrostatics (or electrodynam
obtain the geometric parameter that determines the effect of

the contact shape. For example, the capacitance of a solid
circular disk of radius b in an infinitely extended medium is

defined as?

total charge (Q) on the disk 1)
potential difference (V)

capitance (C)

The definition can be used to obtain the capacitance, which

is found to be C = 8bey2, where €o is the absolute dielectric
constant of free space (vacuum). It is also well known that
the thermal constriction resistance of an isothermal, circular
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disk of radius b within an infinite medium of thermal conduc-
tivity k is/ R = 1/(8kb).

We see that both physical problems are mathematically
equivalent and that the capacitance divided by the dielectric
constant is equal to the reciprocal of the product of the
constriction resistance and the thermal conductivity in the
following manner:

C/le, = L/kR = ¥ a (2)

In Eq. (2), the parameter ¥ is a function of the geometry
(shape of the disk) and the boundary condition. For the

example just given, ¥ = 8. By means of Eq. (2), one can

always determine the thermal constriction resistance of a
particular contact area given the capacitance of the same
geometry having mathematically equivalent boundary condi-
tions.

A survey of the open literature reveals that two per-
tinent paper82’3 have considered the capacitance of a circular,
annular geometry. In both studies, it was assumed that the
annular disk had a uniform potential. Smythe2 used the con-
cept of superposition of known solutions to obtain an approx-
imate solution to the capacitance problem. Cooke3, on the
other hand, obtained a formal solution to a set of triple
integral equations that result from the use of circular
cylinder coordinates to formulate the capacitance problem.

The solution was obtained in terms of a function that was
determined using a Fredholm integral equation of the first
kind.

The results of these studies ’~ can be used to deter-
mine the constriction resistance of an isothermal, circular,
annular contact using Eq. (2). The purpose of this paper
is to obtain a closed-form solution to the problem described
herein for the case of a uniform heat flux boundary condition
by means of the integral formulation® developed recently,

and to compare these results with those of SmytheZ and
Cooke.3

Classical Problem Solution

Problem Statement

A circular, annular contact area of radii a, b (a < b)
is situated on the surface of a half-space of thermal conduc-
tivity k (Fig. 1). Heat enters the half-space through the
contact area only and flows steadily through the conducting
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2b

Fig. 1 Circular annular contact.

medium, leaving it through a boundary far removed from the
contact area. The surface of the half-space within the inner
radius a and outside the outer radius b is assumed to be
impervious to heat transfer. Over the contact area, either
the temperature or the flux may be prescribed (e.g., uniform).
The temperature within the half-space tends toward a uniform
temperature at points far from the contact area. For conve-
nience, this temperature will be taken to be zero.

The thermal constriction resistance is defined as the
average temperature of the contact area minus the temperature
at infinity divided by the total heat flow rate through the
contact area. In order to determine this resistance, we must
obtain the temperature field and the heat flow rate.

Solution

The classical approach to this problem is to place the
origin in the center of the annular contact (Fig. 1) and to
write the governing differential equation in circular cylinder
coordinates (r,z):

2 2
L 2K
or oz
It is clear that we are concerned with axisymmetric problems

only.
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The temperature field must satisfy the following boundary
conditions:

oT

z = 0, 0<rc<a, — = 0
- 0z
oT
b<r’ gz_— 0
a<r«<hb, T = T or
0
-k gg— = 2Q 5 (4a)
m(b™ - a)
oT
= > —_— =
r 0, z >0, e 0 (4b)
r>o , z =0, T -~ 0 (4c)
z-+00, r=0, T—>O (4d)

The so%ution of Eq. (3) satisfying boundary conditions (4b -
4d) is

[ee]

Az

T(r,z) = IAO\) e JOO\r)%)-\— (5)
o]

where Jo is the Bessel function of the first kind of zero
order.

The function A(A) can be determined by means of the
boundary conditions along z = 0. It can be shown that A(}\)
must satisfy the following triple integrals for the two special
cases just given above:

1) Isothermal

[ A0 I_Or) ;li =T, a<r<hb (6a)
0
[ A Jo(Kr} dA =0, 0<r<a (6b)
(o)

AQ\) JO (Ar) dA =0, b <r (6c)

O Y—

A ANV 1 0

5 A1 s 1
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2) Constant Flux

AQ) T (r) dr = & a<r<b  (6d)
o} 2 2
km(b~ - a”)
0
A(N) JO(Ar) dx = 0, 0<r<a (6e)
(o]
.
A()) Jo(kr) dx = 0, b<r (6£)
4
o)
In both cases, A(A) must satisfy simultaneously the triple
infinite integrals given by Eqs. (6a-6f), respectively. With
b
T =— 1 > J T(r,0) 27rdr (7)
m(b™ - a”)
a
it is easy to show that, with Eq. (5), Eq. (7) becomes, in
general,
b o0
[ — Ay I 0r) 2 rar (8)
2 2 o A
(" - a”)
a o)
for the isothermal case T = T . The total heat flow rate
can be determined as follows:°
b
Q = J « &b onrar (9
0z
z=0
a
Taking the gradient of Eq. (5) with respect to z at z = 0 and
substituting it into Eq. (9) yields the general expression for
the heat flow rate: :

Q = 2Tk [ [ J AN JO(Kr) dk] rdr (10)

Z o}

For the constant-flux case, the total heat flow rate is simply
Q. Equations (8) and (10) now can be used to obtain the
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|
general dimensionless thermal constriction parameter —
Py = bkR:

|
| a _
° .
[ AQ) T () rdr
: _ 1 a’ Lo °
Y = (11)

(o]

: a wb(l—ez) Yl 3 -
’ AAN) JO(Kr) dA rdr
J

>
>

% where € = a/b < 1.

The solution of Eq. (11) is dependent upon one's ability
to solve the triple infinite integrals for the function A(A).
Since the theory of triple infinite integrals has not been
developed yet to the point where solutions for Egqs. (6a-6f)
(let alone the general cases) are readily obtainable, it is —
almost impossible to obtain analytic solutions to Eq. (11).
Because of these insurmountable difficulties encountered in
the classical approach to this problem, it was decided to
obtain a solution for the uniform flux case using the integral
approach.4 _

' Integral Solution -

In a recent paper,4 Yovanovich developed integral
; expressions for the temperature field and contact area temper-
| ature, as well as the thermal constriction resistance for
' arbitrary flux distributions over arbitrary, planar contact —
areas supplying heat to insulated half-spaces. In general,
the constriction resistance can be evaluated by means of the
following expression:

N N
nEat *
J) r _

1 T T

= 12

R 2kl e (12) _
: qdl

i JJ -
| T

i i s

where q is the flux distribution over the contact area I', and _
r is the distance in the contact plane from the elemental heat

. source qdT and the point under consideration. The double —
; integral in the numerator represents the evaluation of the lo-

cal temperature and then the average temperature. The inte-

gral in the denominator is the total heat flow rate. _
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For the case of a circular, annular contact area with
uniform heat flux, the contact area temperature is

(13)

_2ab ety - & & xr _ A4 k@
=22 [E(b) G @+ @ 1- Q) K(r)]

where K and E are complete elliptic integrals of the first and

second kind, respectively.
1f we let ¥ = a/r and, as before, € = a/b, Eq. (13) can
be rewritten as

T () =%%[E(%-snmm+ %mm—%Ewﬂ (14)

(14) into Eq. (7), we obtain

After substitution of Eq.
e the expression

for the average contact area temperatur

£
2
- _ =2 € T(k)dK
Y e
(1-¢ ) K
1

Equation (15) with Eq. (14) reduces to the evaluation of the

four integrals given below:

= _ ~hqal € - -
T = “me 1_82) {1’l I, + 1, 14} (16)
where
€
_ E(e/k)dK
Iy g 3 a7)
1
€
_ K(k)dK
12 = € { Kz (18)
1
€
_ K(k)dK
I, = ¢ ( ——;Z__ (19)
1
€
_ E(k)dK
I, 5 ———————K4 (20)
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Solutions to these integrals cannot be found in the handbooks
on elliptic functions.d>® Our evaluation of these four inte-
grals is presented next.

Integral Evaluation

The integral, Eq. (17), can be transformed into one that
is tabulated if we let Yy = €/k. Then,

2
dv = - (e/y7) dy, « = €[y (21)
with Eq. (21), Il becomes
€
I =1 | B(y) vd (22)
1 5 Y) yay
€ 1
6
The solution to the integral in Eq. (22) is available :
£
1 2 2
J E(y) vdy = 5'{(l+€ ) E(e) - (1-€7) K(e) - 2E(1)} (23)

1
with E(1) =1, Eq. (22) with Eq. (23) yields

2 2
I, = ili%—l E(e) - 55:571 K(e) - 25 (24)
3e 3¢ 3¢

The integral in Eq. (18) is tabulated6:

€

€
[ K(k) de _ [E(K)} -1 - E®©) (25)
2 S €
1 K
Therefore,
12 = € - E(¢) (26)

The integrals in Egs. (19) and (20) can be combined to fo;m a
new integral IS:

I5 = I3 - I4

™

(27)

=]

€ J [K(k) - E(x)]
1
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The solution of Eq. (27) will be effected by using integra-
tion by parts where we make the transformation

dk

u =K - E, du = KE(k) —= (28a)
K'Z
d
dv = =, va - (28b)
3
K 3K
where ' is the complementary modulus with respect to K.
By means of Eq. (28), Eq. (27) becomes
I5 = uv - j v du
>
£
- ¢ K(k) E(x) . 1 KE(K2 dx (29)
3K3 3K3 K 2
3 1 1
! After substitution of the limits of integration, Eq. (29)
N becomes -
"é -K(x) E (k) eK(1) € £ E(k) dx
; = + <+ - — —— Funilh, R ANt
i IS 2 2 3 3 * 3 2 "2 (30)
3¢ 3¢ 1 K- K

gi The remainin% integral in Eq. (30) will be evaluated using
the identity

%ng [ [K(<) - «'% R(0)] —ngj—' = %‘[K(K) - E(9)] (31)
1! <!

But, we can rewrite Eq. (31):

2 .2 2 <
K K K

J E(k) dk _ J K(k) dx _ K(k) _

! Recognizing that
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we now can put

£

’ £
i E(k) dk _ [K(K) _ ZE(K)]
j K2 K,2 K K 1
K(e) _ 2E(e) K@) 2E(1)
€ £ 1 + 1 (34)
Substitution of Eq. (34) into Egq. (30) gives us
_ E(e) _K(e) ., K(e) _ 2E(e) , &
Is > 7 T3 3 73 (33)
3e 3¢
With Egs. (24, 26, and 35), Eq. (16) becomes, after much
simplification,
T =L L e’ + a-h) k(o) - @) B©]
(1-e7) (36)

the average contact area temperature as a function of the uni-
form flux, thermal conductivity, outer radius, and a complex
geometric parameter.
. . 2 2
Since the total heat flow rate is Q = qmb~ (1-€7), the
dimensionless constriction resistance given by Eq. (12) is
found to be

RS = 82 L [1+e° + (1-e2) K(e) - (1+e2) E(e)] (37)
37 (1-€7)

*
where R = kbR = wa’ the constriction parameter of Eq. (11).

It can be seen that Eq. (37; gives wa(€=0) = 8/3ﬂ2, in
agreement with the disk solution. Some typical values of wa
for several values of € are presented in Table 1.

It is interesting to note that Yy _ decreases slightly as
€ increases from O to some value near 6.4; thereafter Y,
increases monotonically as € approaches unity. The minimum
value of U, is approximately 0.2660. The asymptote of Y, as ¢
tends toward unity was determined by means of a correlation of
the semilogarithmic plot of wa against (8‘1 - 1). Utilizing
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Table 1 Typical values of wa vs. €

€ wa
0.1 0.2695
0.2 0.2680
0.3 0.2667
0.4 0.2660
0.5 0.2666
0.6 0.2691
0.7 0.2746
0.8 0.2858
0.9 0.3109
0.95 0.3390
b, = ¢, falc, /(e - 1] (38)
a 1 2

as the correlation equation, it was observed that a very good
fit could be obtained if C1 = 0.0503 and Cp = 39.66. It was
decided to use a slightly less accurate expression:

b, = 0.050 n[40/(e™t = 1)1 (39)

Equation (39) differs from the exact expression, Eq. (37), by
less than 0.447% when 1/€ < 1.005. At 1/ = 1.011, the error
is 1.92%.

2
Comparison with Results of Smythe and Cooke3

Smythe,2 by a rather ingenious superposition of known
solutions, obtained two approximate expressions for the capa-
citance of an isopotential circular, infinitely thin annulus.
Nondimensionalizing Smythe's capacitance expressions allows us
to determine the constriction parameter for an isothermal
annular contact. These expressions are

T _ 1 [Qn 16 + &n [(1+e)/(1-€)] ] (40)

wa - ;E- (1 + )

for 1.000 < 1/e < 1.100, and

T (r/8)

[cos”le+ 1-¢? tanh‘le][1+o.0143e'l ran> (1.28¢) ] (41)

for 1.1 < 1/e < », Typical values of wT are presented in
Table 2. a
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Table 2 Smythe's values of w: vs. €

T
1/¢e wa
1.01 0.4113
1.05 0.3365
1.10 0.3085
1.20 0.2855
1.40 0.2683
1.60 0.2610
1.80 0.2570
2.00 0.2548
3.00 0.2510
5.00 0.2501
' T
Table 3 Cooke's values of wa vsS. €
T
1/ wa
1.021 0.3748
1.091 0.3120
1.125 0.3000
1.20 0.2848
1.25 0.2785
1.50 0.2635
2.00 0.2548

Cooke3 reported some values of the capacitance predicted
by his complex analysis. These values were determined numer-
ically by means of an elaborate and costly computer program,
and they are reported in Table 3. It is apparent from an
examination of Tables 1-3 that the results of Smythe2 and
Cooke3 are essentially in agreement. The constant flux con-
striction parameter (Table 1) is seen to be greater than the
isothermal constriction parameter (Table 2) for all values of
the geometric parameter €.

The maximum difference between the constant flux and
isothermal cases is about 8.08% when € = 0. The percent
difference decreases as € increases, becoming less than 1%
when 1/€ = 1.01. As 1/¢ approaches unity, the difference
becomes negligibly small; for example, when 1/¢ = 1.0001, the
difference is only 0.4347%. Thus we conclude that, for circular,
annular contact areas produced by the elastic contact of
an O-ring and a smooth flat, the effect of the boundary con-
dition is negligibly small, and one can use either the solu-
tion for the isothermal contact or the constant flux to deter-
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mine the constriction resistance. Since Eq. (39) is equiva-
L lent to Eq. (40) but much simpler, it is recommended that one B
use Eq. (39) for predicting the thermal constriction resis-— ‘

tance of a circular, annular contact.
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