THERMAL CONSTRICTION RESISTANCE OF ARBITRARY PLANAR
CONTACTS WITH CONSTANT FLUX

* +
M.M. Yovanovich, S.S. Burde, J.C. Thompson

University of Waterloo, Waterloo, Ontario
Abstract

Steady-state thermal constriction resistances of singly-
connected, planar contact areas of arbitrary shape with con-
stant flux on insulated half-spaces are considered. An inte-
gral formulation and an extremely accurate, seminumerical in-
tegration procedure applicable to any shape are used to obtain
numerical values. The customary definition of the constric-
tion resistance ( aR) is compared with alternate definitions
based upon the square root of the area and the average or
centroidal temperature (\V/A R, AVA Rp). The latter definition
appears to be most useful because it varied by less than 5% for
all shapes considered. Moreover, it is based upon easily com-
puted quantities. {

Nomenclature 5
A = contact area
Ay = contact area in the first quadrant
a = characteristic dimension of contat along x axis -
B = beta function '
b = characteristic dimension of contact along y axis i
G(v,v)= function defined in text §w
n = geometric parameter 4
Q = heat flow rate -
q = heat flux- t
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R = constriction resistance ~
R = constriction resistance based upon average temperature
. Ro = constriction resistance based upon centroid -
; temperature
| T = temperature B
T = average contact area temperature —
T centroidal temperature
u° = dimensionless coordinate (= x/b) =
v dimensionless coordinate (= y/b)
X,y,z= Cartesian coordinates n
i Greek Symbols

: o} = aspect ratio (= b/a)
3 €12€5= incremental distances, dimensionless
- T = gamma function
> n = flux coordinate
5] = angular measure
A = thermal conductivity
£ flux coordinate
U = dimensionless coordinate (= &b)
V = dimensionless coordinate (= n/b)
o} = radial vector in the xy plane
po = centroidal radial vector to boundary of contact area

Introduction

This paper concerns the thermal resistance of contact
areas formed when either flat nominally, rough surfaces are in
mechanical contact or smooth, curved surfaces are in elastic
contact. In the first instance, each microcontact is assumed
V to be circular and usually is modeled as a contact on a half-
. M space. The constriction resistance of a circular contact sub-
’ jected to a uniform heat flux is known.! 1In the second ins-

tance, the general contact area is elliptical when, as an
. example, a sphere is in elastic contact with a race. It has
3 ’ been shown that this contact can be modeled as a contact on a
. half-space.?

The boundary-value problems just given require complex
functions to describe the temperature field and the thermal
resistance due to these contact areas. For example, in the
circular contact solution, Bessel functions and exponentialsl
appear, whereas for elliptic contact, complete elliptic inte-
grals of the first kind are required.2 The square and rec-
tangular contacts also have been studied,3 and here trigono-
metric and exponential functions are required in the solution.
It therefore appears that each family of shapes requires a
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Fig. 1 Family of contact regions characterized
by geometric parameter n.

unique and different function for its closed-form solution;
moreover, the resulting expression for the constriction resis-
tance is different and seems to be unrelated. For contact
areas different from these shapes, closed-form solutions are
not available. It is not known whether other shapes will
yield constriction resistances different from or similar to

those shapes studied to date.

It is the objective of this paper to examine a special
class of arbitrary, singly connected planar contact areas
situated on half-spaces. This class of contacts will contain
the circular, elliptic, square, and rectangle as special cases.
The constant-flux condition will be assumed, and the integral
method will be employed to determine the temperature field

and the constriction resistance.

Problem Statement

Consider one, singly connected, planar contact area on an
insulated half-space (z > 0) whose thermal conductivity is A.
The contact area is subjected to a uniform heat flux q. Its
contour in the first quadrant is described by the following

equation:

(x/a)™ + (y/)" = 1 (1)

where a and b are the characteristic dimensions along the x
and y axes, respectively (Fig. 1).
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Fig. 2 First quadrant shape of contact regions
for various n.

The effect of the geometric parameter n upon the shape of
the contact area is shown in Fig. 2. When 1) n = 2, the con-
tact is elliptical (a > b) or circular (a = b); 2) n = 1, the
contact is diamond-shaped (a > b) or square (a = b); 3) n > 2,
the contact is a rectangle (a > b) with rounded corners or a
square (a = b) with rounded corners, and 4) n < 1, the contact
is an astroid (a = b).

The total heat flow rate Q entering the contact area A is
removed from the system through a boundary located at a dis-
tance that is large relative to some characteristic dimension
of the contact area. The heat flow rate is related to the
contact area as follows:

Q = 4q A (2)
where Ao’ the total area in the first quadrant, is given by

b all-(y/b)"11/n

A = dxdy

1
= ab 1 - Vn]l/n du (3)

’

0

with u = x/b and v = y/b. The integral in Eq. (3) can be
evaluated, and therefore we have?
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o} n n n
‘ giving us
_ 4qab (n + 1 l} B
Q 12 g 2—=, &) = aA (5)

Equation (5) thus defines A in terms of the beta function B,
which depends only upon the geometric parameter n. If for con-

venience we define the contact area aspect ratio O = b/a < 1,
then the product ab in Eq. (5) may be written as aZq,.

Yovanovich4 has demonstrated that this type of boundary-
value problem can be solved using an integral method for the
general case of arbitrary heat-flux distribution over an ar-
bitrary contact area. In the special case of uniform flux,
the constriction resistance, defined as the average temperature
of the contact area divided by the total heat flow rate, is

given by
= 1
R = —5 JJ T(x,y,0)dA (6)
qA A
‘ where T(x,y,0) is the local temperature within the contact due

to the uniform flux q entering the contact at the point (E,M).
The local temperature is

T(x,7,0) = 5o ” d&dn - (7
A/ (E-n+m-y

Substituting Eq. (7) into Eq. (6) and taking advantage of
symmetry, we obtain the following expression for the constric-

tion resistance:

e

S S R L

where AO and A have been defined in Egqs. (4) and (5), respec-

tively.
It can be seen in Eq. (8) that the thermal problem has
. been reduced for the special case of uniform flux to a purely

geometric problem, i.e., the analytic or numerical evaluation
of double integral within a double integral over the contact

area given by Eq. (1). The method employed to evaluate these
multiple integrals will be considered in a subsequent section.
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Dimensionless Constriction Resistance

It is customary in heat transfer to define a dimension-
less resistance and to base this resistance upon the thermal
conductivity of the half-space and some characteristic dimen-
sion of the system. If we choose a, the characteristic dimen-
sion along the x axis, the dimensionless resistance based upon
the average contact area temperature will be AaR, which is
the customary definition.l Another expression for the dimen-
sionless constriction resistance may be obtained if we choose
the square root of the total contact area as the characteris-
tic dimension of the system. In this case, we have AvA R.

These two definitions of the characteristic dimension of
the system yield the following two expressions:

= 1 =n.1/2 1 d &dn
raR o = 4m aB] 3/2 { [ 5 5 dxdy
A A //Ea—x> + (n-y)

A
(9)

and

AVA R = 1l dxdy (10)

L1 [ ain
2m  3/2
A 2 2
AT A /(E—x) + -y
Before proceeding to the evaluation and comparison of these
integrals, we shall consider an alternate definition of the

constriction resistance.

Centroidal Temperature and Constriction Resistance

When a singly connected, planar contact area having the
contour given by Eq. (1) is subjected to a uniform flux, the
maximum temperature within the contact area will occur at its
centroid. Yovanovich% has shown that the centroidal tempera-
ture TO can be obtained by means of the following expression:

m/2
- 29
TO -y o, do (11)
2 .

where the radius vector p,, from the centroid to any point on
the contact area contour making an angle 6 with the x axis
as shown in Fig. 1, is given by

o = b o<1 (12)

[sinne + o cosne]l/n
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A new expression for the constriction resistance may be
derived by defining the resistance as the quotient of the

‘ centroidal temperature and the total heat flow rate. There-
fore,
T/ 2
T
o 2b { do
R = —= = (13)
© Q A 0 [sinn6 + o cosne]l/2

As before, the centroidal constriction can be normalized.
Using the various characteristic dimensions defined earlier,
we obtain the following expressions:

m/2
de

AaR = —— J (14)

© 2B 0 [sinn6 + o cosnE)]l/n

m/2
1/2

A Ro - %{%E} [ n dg n..1l/n (15)

[sin ' © + a cos 6]

0

Equations (14) and (15) are clearly functions of the geometric
parameters n and 0, because B depends upon n only.

Integral Evaluation

This section will consider the evaluation of the integrals
appearing in Eqs. (9) and (10). We define the following dimen-

sionless variables:

x/b,

u = &/b, Y
and rewrite the integrals in the
aid of Fig. 3:

+1 +ul(v) +1 ul(v)

= v/b (16a)

= n/b (16b)

following manner with the

o — dudv  (17)
//Eﬁ-u)z + (\)—v)2
"'| 0O 0 -1 u)
with
n.l/n, u =(l/u)[1—vn}l/n (18)

uy =(1/a) [1-v ;
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Integration with respect to U yields
+1 ul(v) +1

I = b j [m{mfm)+v@ﬁﬂn2+(wvﬂ)
0 0 1
) Qn(-(ul+u) +/[(ul+u)2 + (V—v)z) dv ]dudv (19)

The integrand may be interpreted as the temperature at point
(u,v) due to a uniform flux q acting on the strip of infini-
tesimal width dv between -u, (V) and +ul(v) (- and +§ in
dimensional coordinates shown in Fig. 3).

Except for contact areas having linear or piecewise linear
boundaries, U] is not a simple function of v. Consequently,
it becomes difficult or even impossible to carry out the inte-
gration formally with respect to V. Fortunately, however, u
is independent of Vv, so that the order of integration with
respect to these two variables may be interchanged. Integra-
tion of the first term in Eq. (19) with respect to u gives

u
1
{ %n [<“1 - u) + ¢/(ul S -l ] du

0
R T Ly
Tyt up)4n [(Ul -up) # //Gil - ul)2 F-n? ]

+ /(ul - u1)2 + -l ' (20)

Simply substituting -uq for Wy in Eq. (20) gives the result
for the integration of the second term of Eq. (19) with res-
pect to u.

Equation (17) now can be written as

1 1
I = b3 { J G(v,v) dvdv (21)

v=0 v=-1

where the integrand in Eq. (21) is given by
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Fig. 3 Temperature and heat flux strips. —

G(v,v) = 2ulzn|v-v| - (uy ~u)in [(ul—ul) +¢/(u1—ul)2+(v—v)2]

= (Bq*u )in [—(Ul+ul) + w/(ul+ul)2 + (\)-V)z]

T /(u1+ul)2 - (22)

Disregarding scalar multiplicative constants, we may inter-

pret 6(v,v) as the integral of the temperature along the strip
of width dv between o and +uj due to the uniform flux on the _
strip of width dv between —ul and +ul.

The presence of the logarithmic singularities in the
first two terms on the right-hand side of Eq. (22) when v = v
and uy(v) = uj (v) would appear to make it impossible to eval- -
uate I accurately by a numerical technique. However, it is
not at all difficult to prove that the error introduced by —
simply neglecting the interval v - €1 < v < v + €2 when the
quadrature with respect to v is carried out tends to zero as
€] and €9 tend to zero. Consequently, the authors adopted a B
quadrature procedure, which involved dividing the intervals
of integration of v and Vv into M and N strips of equal width, —
respectively. Then the dimensionless resistances given by
Eqs. (9) and (10) could be computed from the expressions

2 MoN
] v T T Gu, V) (23) B
i=1 =1 3

wis
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o raayd? MN
WE R = 7 {'3?’] D I SIS (24)
i=l j=1

In these equations, Vj and vy denote midpoints of the jth and
ith strips. The obvious requirement that no Vy = Vj term be
so small as to cause numerical difficulties was avoided by
maintaining a ratio of M:N = 5:8, by limiting N to 80, and by
doing all calculations in double precision.

The beta function appearing in Egs. (23) and (24) was
replaced by gamma functions:

r&tly ra/m) 8
B(n + 1 , 1._) - n (25) .
n n F[(n+2)/n]

Numerical Results and Discussion

Computer programs were written for the numerical evalua-
tion of Egs. (14, 15, 23, and 24) with Eq. (25). The inte-
grals appearing in Egs. (14) and (15) were evaluated by 5
five-point Gaussian quadrature. The accuracy of the inte-
gration technique and the programming were checked by compar-
ing the computed results for a circular contact area (n=2,

o = 1), AaR = 0.2701 and \WVA R = 0.4787, with the classical
results, AaR = (8/3m2) = 0.2702 and AVA R = (8/313/2) =
0.4789.1,4 These results were obtained for M = 50 and N = 80.
Only slightly less accurate results were obtained for M = 25
and N = 40. The excellent agreement between the numerical
results and the exact results for the circular contact area
confirmed that the program was functioning properly and that
it could be expected to yield accurate results for other
values of n and o. Numerical results also were obtained for
several values of n (1/4, 1/3, 1/2, 1, 2, 4, and 10) and
several values of the aspect ratioa (1, 0.8, 0.6, 0.4, and

0.2).

Table 1 contains selected values of the dimensionless
constriction resistances for the symmetric contact (o = 1).
The numerical results given in Table 1 show clearly that the
dependence of the dimensionless resistance upon the contact

area is reduced considerably when /A is selected as the char-—

acteristic dimension of the system. If we use the results f

for the circular contact area (n = 2), it can be seen that,

for K/K.E; the difference between n = 0.5 and n = 2 is
-7.25% and between n = «® and n = 7 is -1.15%. On the other

hand, these differences reduce to -3.08% and -0.55%, respec-
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Table 1 Selected values of the dimensionless constriction —
resistance for a =1 (M = 50, N = 80)

n AaR AaR AVA R AVA R_ -
0.5 0.5424 0.6697 0.4440 0.5468 -
1.0 0.3341 0.3968 0.4728 0.5611
2.0 0.2701 0.3183 0.4787 0.5642 —
4.0 0.2477 0.2924 0.4770 0.5631

w 0.2366 0.2805 0.4732 0.5611 -

tively, for the XVK-RO dimensionless resistance. If the
average value of AVA RO = 0.5593 for the five cases given in -
Table 1 is used, it can be seen that the minimum value of

AVA RO corresponding to n = 0.5 differs by -2.23%.

To see whether this close agreement was due to the
symmetry of these contact areas, two special nonsymmetric,
singly connected, planar contacts were investigated. In the _
first case, the average and centroidal temperatures were com-
puted for an equilateral triangle subjected to a uniform heat —
flux. The dimensionless constriction resistances were found
to be A\VA R = 0.4600 and A\VA R = 0.5516. In the second case,
both average and centroidal te%peratures were obtained for a
semicircular contact area subjected to a uniform heat flux.
For this shape, the dimensionless constriction resistances -
were found to be AVA R = 0.4610 and AvA RO = 0.5456.

The very close agreement between X/K‘Ro for the triangle
and the semicircle and AVA R_ = 0.5593 is remarkable. When
these two nonsymmetric contagts are taken into account, the _
average value of A/A R becomes 0.5562 (R 5/9). It can be
shown that the mean value of WA R for the five cases given in —
Table 1 plus the triangle and semicircle is 0.4667. Since the
constriction resistances are proportional to the average and
centroidal temperatures, the ratio of the average value of
the mean contact area temperatures to the average value of the
centroidal temperatures is —

(T) (\VA R) -
&V - ——2 - 0.840 (26)
(To)av O\/A Ro)av

This is an important relationship, which can be used to esti-
mate quickly the average contact area temperature given the —
centroidal temperature.
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Table 2 Fffect of wupon sz-ﬁ; AVA RO, and EVRO

n=1/2 n=1

o A/AR MKRO f{-/RO AVA R x/XRO E/RO

0.4440 0.5468 0.8100 0.4728  0.5611 0.8420
0.4428 0.5458 0.8100 0.4713  0.5597 0.8419
0.4376 0.5420 0.8074 0.4651  0.5540 0.8400
0.4237 0.5310 0.7963  0.4487 0.5385 0.8328
0.3860 0.5005 0.7701  0.4052  0.4957 0.8170

[oNoNe N
N B~ o0

o AAR MXRO 'R'/RO A

B
|
>
>
OPU

R/R
/ 0

1 0.4787 0.5642 0.8482 0.4770 0.5631 0.8471
0.8 0.4772 0.5624 0.8483 0.4756  0.5611 0.8476
0.6 0.4711 0.5551 0.8486 0.4696  0.5530 0.8492
0.4 0.4548 0.5360 0.8486 0.4537 0.5317 0.8536
0.2 0.4112 0.4845 0.8488 0.4111 0.4762 0.8636

The effect of the aspect ratio O upon A/A R, Av/A R , and
their ratio is shown in Table 2 for a few selected values of
the geometric parameter n. It is apparent from an examination
of Table 2 that both A\A R and A/A RO decrease slightly as O

goes from 1.0 to 0.4. For a < 0.4, the change is somewhat
greater. The ratio of the average and centroidal is a rela-
tively weak function of the aspect ratio. It also is interes-
ting to note that this ratio is very nearly the average value

of 0.840, Eq. (26).

Conclusions

An integral-numerical method is proposed for calculating
the constriction resistance of singly connected, arbitrary
contact areas. The agreement with certain exact solutions was
found to be very good. The square root of the constant area
was found to be the characteristic dimension, which resulted
in a dimensionless constriction resistance that did not vary
much with the shape of the contact areas considered in this
study. An alternate definition of the constriction resistance
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based upon the centroidal temperature, which is computed
easily, resulted in a dimensionless resistance that was rather
insensitive to the shape of the contact as well as its aspect

ratio.

For the shapes considered in this study, it was found that
the dimensionless constriction resistance based upon the
centroidal temperature is AVA R = 5/9, with an error not
exceeding 57 for o > 0.4. The gverage and centroidal temper-
atures were found to be related in the following manner:

T/T = 0.84, with an error not exceeding 4% for all of the
shages considered. These relationships allow one to estimate
quickly the magnitude of the constriction resistance. Also,
most contact geometries can be modeled as circular contacts
having the same area with an error not exceeding 57.
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