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Abstract

In the analytic solution of heat conduction and
other potential field problems, it is often advantageous
to employ an orthogonal curvilinear coordinate system.
Advantages similar to those obtained in analytic solu-
tions can also be gained through their use in numerical
solutions. Using a Taylor series expansion to approxi-
mate the spatial derivatives appearing in the general
heat conduction equation with appropriate consideration
of the heat generation and time dependent terms, gen-
eral expressions are derived which define the finite
difference coefficients for use in finite difference
analyses. The ease of applicability of the resultant
coefficients is demonstrated by example for the circular
cylinder coordinate system. A second example employing
oblate spheroidal coordinates is also given. Two ref-
erences cited illustrate its successful usage on prac-
tical problems. The generalized finite difference coef-
ficients can provide substantial flexibility, accuracy,
and economy to finite difference solutions when appro-
priate selection of the coordinate system is made.

Nomenclature
L ] = generating disk radius of oblate
spheroidal coordinate system
A = area
cl.cz.c3 = fin{te difference (f.d.) coefficients

c‘,cs.cﬁ,c‘ w finite difference (f.d.) coefficients
specific heat at constant pressure
constant, defined in equation (17)
Fo = Fourier modulus, at/a2

8;:85185:8 * metric coefficients (defined in text)

1,5,k = subscripts denoting three principal
directions

P = heat generation rate per unit volume

r = radial coordinate of circular cylinder
system

t s time

T = temperature

U;1U,,u, = three principal generalized coordinate
directions

v = volume

b 2% = coordinate directions in cartesian frame
a -

thermal diffusivity, a = A/pcp

oblate spheroidal coordinate
oblate spheroidal coordinate
thermal conductivity

mass density

angular coordinate of circular cylinder
system

oblate spheroidal coordinate
Introduction

In the solution of heat conduction and other po-
tential field problems, the governing differential
equation can always be written in terms of the three
conventional coordinate systems; cartesian, circular
cylinder or spherical coordinates. This is so since
the governing equation is concerned with satisfying an
energy balance imposed on a differential volume element.
Since the volume element 1= 5f 2iffesential diwecusiuns,
its specificatior need not be tied to the geometry of
the bounding surfaces and as a result the governing
equation can be formulated in either of the three con-
ventional coordinate systems. Where the bounding sur-
faces of the region under consideration lend themselves
to a cartesian, circular cylinder or spherical frame,
many solutions are available(l),

It is sometimes possible, however, to set up a
system of coordinates 'more natural' to the vector
field of interest, in this work that of heat conduction,
whose coordinate surfaces iggform to the lines of flow
and the potential surfaces . In the solution of many
of these problems, the nature of the resultant field is
determined by the specification of its behavior at its
bounding surfaces, by specifying the nature and posi-
tion of its singularities, or by a combination of these
two influences. The resulting field specification may
often have a simple and tractable form in terms of
these 'natural' coordinates(3) whereas in terms of the
three conventional systems the problem specification
may be complex and its solution intractable.

It is for these reasons that it has become increas-
ingly important for the heat conduction analyst to be
proficient in the use of orthogonal curvilinear co-
ordinate systems in the solution of heat conduction
problems. However, while many multi-directional prob-
lems can be reduced through their use to problems de-
pendent upon a single curvilinear coordinate, there
still remains a wide variety of problems which cannot
be so reduced but for which the flow of heat is predom-
inately uni-directional in nature. Where possible,
analytic solutions to these problems are desirable
since the effect of changes in the various solution
parameters can immediately be evaluated by examination
of the functional form of the solution. Unfortunately,
however, the scope of problems which lend themselves to
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such analytic solutions, whether approximate or exact,
is limited to those having relatively simple bound-
ary conditions, The vast majority of two and three
dimensional problems in conduction heat transfer have
no known analytic solution due to irregular boundary
geometries and/or inconvenient boundary condition
specifications. In such cases it may be advisable to
use a numerical method to obtain an 'adequate' solu-
tion more simply and efficiently than to labor with an
analytic method which may not admit a solution within
the time frame allowed for the problem. The finite
difference method is a numerical solution procedure
popular in the solution of heat transfer ptoblems("loz
The spatial discretization process inherent to the
method leads to a system of simultaneous algebraic
equations which must be solved to determine the tem—
peratures at discretized locations in the field, the
nodal values.

Determination of the coefficients multiplying the
nodal temperatures in these algebraic equations is of
considerable concern since approximations made there
directly influence the acc?rgcy of the results. In the

4 , the three conventional
coordinate systems are treated and their corresponding
finite difference coefficients obtained. The major
limitation of his analysis, however, lies in the re-
striction to the three conventional coordinate systems.
{2_{8gt, in his and other finite difference analyses

, not only is the restriction to the three con-
ventional coordinate systems made, but for each of the
three, a completely independent development has been
required. Recently, an examination of a specialized
coordinate system has been made and the resulting coef-
ficients used successfully in finite difference solu-
tions(11,12), Throughout the remaining literature
dealing with the subject, however, attention has been
restricted tuv the three conventional coordinate
systems.

Convinced that advantages similar to those avail-
able when using the most appropriate coordinate system
in an analytic solution, are possible when performing
a8 numerical solution, this work is aimed at providing
8 generalized development of the finite difference co-
efficients fcr use with any orthogonal curvilinear co-
ordinate system in the numerical description of the
heat conduction equation. This will be accomplished by
employing a Taylor series expansion in the vicinity of
the current node of interest to describe the local tem-
perature field. 1In this way the required derivatives
can be approximated and substituted into the governing
differential equation thereby developing the differ-
ence equations controlling the flow of heat within the
discretized spatial domain.

Preliminary Remarks

In a general orthogonal curvilinear coordinate
svstem, (Ul.U:.Ua). the heat conduction equation can
be written as (Zf

2 ["1"E BT, , 2 2,8 o, 2 [*3"E T |
3u1 g aul au2 g, 3u2 3u3 g3 3u3
R 4
+RP g5 URoC, T eV

where the metric coefficients relating the iu§v111near
system to the cartesian frame aredefined by 2

° = (.3_"_)2 + (EY_)Z + (_az_.)z {=1,2,3 )
8 = Mo, du, u, 4
with /g = /31.32.33 3)
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Since a general solution of equation (1) with arbi-
trary boundary condition specification is not yet pos-
sible, many problems of practical interest must remain
unresolved 1f only analytic solutions are considered.
This realjzation has led to increased usage of the
finite difference methods for solving certain heat
conduction problems.

The finite difference method is concerned with the
approximation of equation (1) for use in a numerical
computational scheme and reduces the problem from that
of finding solutions to equation (1) to that of
solving a system of simultaneous equations of the form

c

G T,k % T, TG Ty t

€ T, 541, * % To 5,01t 6 Ta,g,00 4

c +D=0 %)

s 11,4,k

where the subscripts refer to locations within the
decretized spatial domain. The constant term D con-
tains information regarding the heat generation as
well as temperatures from the time planes preceding
the one under consideration. Equation (4) can be
written once for each location of the discretized
spatial domain yielding a system of simultaneous
equations which require solution. In general, the co-
efficients of equation (4) must also be allowed to
vary from location to location in the field. It is
the basic problem, then, for any finite difference
analysis to determine the coefficients and constants
appearing in equation (4) for use with the particular
coordinate system under consideration. An analysis

is presented herein which examines this problem in a
general fashion so that the results are applicable for
any orthogonal coordinate system provided the asso-
ciated metric coefficients are known.

General Considerations .

Figure 1 illustrates a typical volume element in
a general orthogonal curvilinear coordinate system
having coordinate directions ujy, up and u,. The
physical dimensions of the volume element are related
to the variation in the coordinate a}ue through the
metric coefficients by the relation 2

ds, = /E; du,, 1=1,12,3 (5)

i

Using (5), area elements are given by

A, = Jgigk dudu , 1,3,k = 1,2,3 (6)
1#44k

where the convention has been used that the direction
associated with the area element be normal to the plane
in which it lies. Similarly the element of volume is
determined from

v = g du; du, du, (¢)]

The control volume width surrounding node u; is
characterized by Au, where u, is a generalized ortho-
gonal curvilinear coordinate. Extension of this nomen-
clature to other coordinate directions is taken direct-
ly but 1t should be noted that Auy corresponds to a
change in the orthogonal coordinate uy and may not
reflect directly the physical distances involved.

Taylor Series Expansion

Considering the discretization of space as illus-
trated in Figure 2, the subscript i shall be used to
denote the u; direction; j for the u,; direction, and



k for the ujy direction. Y
The first term of equation (1) can be expanded by
performing the indicated differentiation to give
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Similar terms will be present for the conduction terms
in the other two principal directioms.

C

z vs
t4:
0
dsy
Pig. 1 Typical Volume Element in
Curvilinear Coordinates
/.( ivjok+l)
RTI __o(i.i+l.k)
' ~.
(i,j".l)

(i+l,j,k)

d

(i.j,k-”

Pig. 2 Internodal Linkage of Discretized
Curvilinear Space

Expressing the variation in temperature in the u
direction in a Taylor series expansion about node
(1,3,k), the temperature at nodes (i+l, j, k) and
(1-1, §, k) can be given for uniform nodal spacing by

o1 l
Toer,5k " Tig ¥ 2, (8uy) +
1,3,k

1

2 (Au

2

2
1)

Y
-3

+

4
[l ]

Y11,1,k

and ®
(8u,)?

2

T
N A U
1'1 )k

Tot,9k = Ti,9,k "

el
a“i 1,5,k
2y (10)

Subtracting (10) from (9) yields

9T
aul

T -1
41,4k~ T1-1, 1.k
- Ahbk _t-1,0.k Auli + 0[(Au1)3] 1)

1,3,k

a expression for the second derivative can be obtained
by adding the two equations (9) and (10). This gives
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Tear 30k ¥ Tim1,9,0 = %T4,5,0k
327 , 4
- +0[ (8u.) "]
auz (Au )2 1
1 1,3,k 1 (12)

Neglecting terms of order Au3 and higher, equations
(11) and (12) can be used in equation (8) as approxi-
mations to the differentials appearing there. This
substitution yields the result

T +T - 2T
SRRy Myl Jitlgak 1oLk T 1k,

LT (13)

|2 v TRA S SRR
v gy 1

1,3,k

Again, similar expressions can be obtained for the
other two directions by a systematic rotation of the
subscripts in equation (13).

The fourth term of equation (1) can be approxi-
mated by its evaluation at the location of interest
(1,j,k) for the nodal equation. Thus the equality is
assumed

P = (PR, (14)

The final term of equation (1) involves a time
derivative of the quantity (/E p Cp T). A central
difference or forward difference approximation here
requires an input of temperatures taken from a time-
plane in the future, whose values are not known. More-
over, these are not of concern in the solution of the
current time plene temperatures. Therefore, unless a
fully implicit soluticn with reepect to time is
attempted (and this is not practical with present com-
putational facilities) the best approximation to time
derivatives must take the form of a backward differ-
ence quotient. Thus the approximation is

o
(o Cp ) - @ Cp LY
At

i)_ij )j )k]

at

(/g » c, D= /g [
(15)

where the superscript (o) 1s used to indicate that the
information required for evaluation be taken from the
'old' (most recent) time plane.

Reforming equation (1) using approximations (13),
(14), and (15), and combining coefficients of common
nodal temperatures yields the final result

[xﬁ S M| a )1L T
8 A“i 2Aul aul 8, \3 .k 1-1,3,k
.12 S 2 L2 "En T
pul  28uy u, gy i,3-1,k
8 o 1,3,k
. 2 A1 (Aﬁ >1| T
5 Aug 28u,; du, g, 1,3,k-1
1,1.k
+ [..xis-_ + 1 _3_ (.XA/_E.)]
Auz 2Au3 3u3 g, 1,3,k+l
83 Y, 1,1,k
+ [xz"; + 1 .l. (M_)] T
sa? | ZBu, Bu 8, 1,541,k
8; %4y 1,1,k



! 1 32 M1
+{ + v )]I T
R Au2 2Au1 duy N 141,53,k
1 1,3,k
A B, /g Ay /g /g0 c
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g Auz g AuZ g Auz At inj 1k
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A comparison of equation (16) with equation (4)

+C, T
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1T, Y G2 T 50 Y S T gk
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leads to the definitions
.27 [Al /Ez + 2At %' (A; G)]
gl(Aul) 11 1 1,4,k

A, 78 A, Vg
2 -1 3 2
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6 YEo C
C = - { T Cc o+ (_E_;;__E%
s ‘o=l t 1,3,k
and /Elp c
p=[p g+ —52 1°]
- .1ljlk

as the finite difference coefficients required for
each nodal location of the discretized spatial domain,
Bquation (4) with the coefficients (17) can be easily
used for finite difference modelling of heat conduction
and other field problems in any orthogonal curvilinear
coordinate system,

Applications

1. As a first example of the application of the gen-
eral expressions for the finite difference coefficients
(17), the circular cylinder coordinate system will be
considered. Assigning the coordinate directions as

=T, u,= ¢, uy =z ©(18)

“1
the metric coefficients can be easily determined to be

g, "1 B =, g1 g a9
Considering the case of uniform, isotropic

thermal properties, the finite difference coefficients
are obtained by direct application of equation Qan
and division by Ary, where ry is the radial coordinate
at the central node. These are
1 — Ar

7 1% 5]

C -
1,2 (ar)

1
5,6 (Az)2 (20)
6
1
= - {nfl cn + alt
and o
P
D =X *a

The determination of the above coefficients (20)
is extremely simple using the relatioms (17) and can be
compared with the relatively laborious procedure re-
quired when using the conventional approach 10) | The
advantages of using the generalized expressions (17)
becomes immediately apparent.

2. As a second example of the application of the gen-
eral expressions for the finite difference coefficients
(17), the oblate spheroidal coordinate system g}ll be
considered. The transformation equationsrare(

x = a coshn siné cosy

y = a coshn siné siny (21)

z = a sinhn cos®
where the assignment has been made that

u =n, u,= e, uy = ] (22)

The coordinate system is illustrated in Figure 3.
)

A2

6+0

8=const

o7 r

/,,.o °

Fig. 3 Oblate Spheroidal Coordinate System

It is an easy task using the transformation equa-
tions (21) to show that the metric coefficients are
given by

g, ~ 8 - .2 (coshzn - linze)

- a? coshzn sin6 (23)
%y

with /; = 13 (coshzn - -1nze) coshn sind
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The special case of uniform, isotropic thermal prop-
erties will be considered here. Using the metric coef-
gicients (23) in the expressions for the general finite
difference coefficients (17) and performing the in-
dicated operations yields the result

tanhn
1 - i
c - {—=+ }
1,2 Anz 24n
coté
€y = 5 ¥ g
’ A8
(coshzn1 - sinze )
g
Cs.6 "7 __ 2 2 (24)
M AYy” cosh™n, sin €
i 3
6 coshzn - sinle
c =-{f c + i 1,
[ ] a=1 n AFo
P I
a k
and D= (coshzn1 - sinzej){—ilith——— + -—%;1*- }
°

In the above, division of each coefficient by

(a) coshny sindy) has been performed and the defini~
tion of a Fourier modulus (Fo = at/a®) has been intro-
duced. The results (24) of applying the general ex-
pressions derived herein indicate the ease with which
finite difference analyses can be performed on any
system provided there is a compatible orthogonal
curvilinear coordinate system. The expressions given
for oblate spheroidal coordinates (24) have been
successfully applied for axi-symmetric steady state
heat transfer with no internal heat generation( ).
In addition, a complete transient solution 12) (axi-
symmetric, no heat generation) has been successfully
computed describing the heat flow from a thin circular

“- to a half-space, using the above expressions.
g; s not discussed here, boundary conditions can be

ndled in the usual fashion provided the relevant
approximations are made in the curvilinear frame rather
than the cartesian one from which it was derived.

Discussion and Conclusions

A set of generalized expressions has been derived
for determination of the coefficients required for
finite difference modelling of the heat conduction
equation or other potential field governing differen-
tial equation. The coefficient definition generaliza-
tion is such that the coefficients may be applied to
any orthogonal curvilinear coordinate system for which
the metric coefficients are known. The expressions
derived can easily be shown to yield the known values
for the three conventional coordinate systems.

This development significantly extends the analyt-
4cal capability of the finite difference method in that
many highly complex problems can now be handled with
relative ease. This is best illustrated by the second
example cited earlier where oblate spheroidal coordi-
nates were empioyed iu the analysis.

An additional advantage may also be available in
certain problems where the field is expected to be
predominantly uni-directional in the curvilinear
system, while highly two- or three-dimensional in
either of the three conventional systems. For these
problems, considerable computational economy can be
achieved since a fine mesh in the predominant flow
2+-ection can be used to 'pick up' the gradients there

te a coarser mesh may be adequate to account for
w..t two~ or three-dimensional perturbations from this
one-dimensional predominance. Were a conventional
system used for such a problem, fine numerical detail

would be required in all three principal directions
resulting in substantially ;ncreased computational
labor and cost.

Physical considerations also suggest an apparent

advantage available through the use of curvilinear
finite differencing. For problem geometries compat-=
ible with a curvilinear net, the conformal transforma-
tion generating the net is such that even for uniform
{ncrements in each coordinate direction, a finer mesh
(in terms of physical size) is generated near the dis-
continuities which themselves initially suggested the
transformation of coordinates. This has the effect of
automatically generating a variable mesh size with
fine and coarse subdivisions located as required.
This inherent behavior 1s a substantial advantage to
finite differencing in the most appropriate coordinate
system. The expressions developed in this work allow
flexibility in this choice of coordinate frame.

Finally a secondary advantage of the generality
of the derived coefficients is that a program can be
developed in which the finite difference coefficients
appear as statement function definitions. In this way,
problem geometry can be altered (within the realm of
orthogonal curvilinear systems) with minimal change to
the bulk of the solution program. This programming
flexibility can be directly reflected in the analysis
flexibility of the investigator.
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