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Abstract

An analysis is presented for predicting the
local contact conductance of a woven metallic wire
screen contacting two smooth solids under vacuum
conditions. Hertzian theory is utilized to predict
the shape and size of contact areas during first *
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loading. The general constriction resistance P

theory of Yovanovich is used to predict the total qQ = heat transfer rate

resistance of a typical element. A model is pre- -

sented for determining the effect of out-of-flat- R* thermal constriction resistance
ness, upon the average joint conductance. There is R = kecR

reasonably good agreement between this model and

__ the available screen test data. AT = temperature difference

Greek Symbols

Nomenclature = wire spacing parameter

A = geometric parameter 8 = parameter defined by Eq. (35)
a = gemimajor axis of elliptic contact area Y = contour area radius
B = geometric parameter A = parameter defined by Eq. (10)
b = gemiminor axis of elliptic contact area s = cylinder radius
c' = constant for a joint 3 = defined by Eq. (17)
c = wire spacing v = Poisson's ratio
CF = out-of-flatness correction factor, Eq. (45) w = pi
D = wire diameter ] = radius of curvature
d = out-of-flatness T = defined by Eq. (11)
E = modulus of elasticity ¥ = defined by Eq. (16)
B, = @+ Ez/El)ijz Subscripts
E;3 = (1+ EZ/E3) 1,2,3= solid 1, wire and solid 3
F = force between contacting solids 12 = 30lid l/wire contact
hj = local joint conductance 23 = wire/solid 3 contact
Ej = average joint conductance a = apparent
K = complete elliptic integral of the first c = circular

kind

e = elliptic
k = thermal conductivity 3 = jotmt

%*
kiz = 20y /k)) /(1 + Ky /ky) t = total

‘kzs = 20kg/k))/ (1 + kalky) Superseript
T = isothermal
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b=n [3F a3 9

'where a and b are the semimajor and semiminor axes,

respectively. The dimensionless parameters m and n
depend only upon the radii of curvature of the con-
tacting solids, F is the contact force and A is a

geometric-physical parameter defined as follows:(s)
l1- vi 1- vi
a,, = [ + 1/(A + B) (10)
12 El Ez

In Eq. (10) E, and E, are the modulii of elasticity

and vy and vy are the Poisson's ratios of the con-

tacting solids. The parameters m and n are tabu-

lated and depend upon t where

1 B~ A
e

T = cos 11)
When t = 7/2, m = n = 1 and the contact area is cir-
cular. For T < n/2, m > n and the contact area is
elliptical. For the woven screen wires commercial-
ly available, the parameter a ranges from 2.222 to
7.936. In this range T has a maximum value of 60°
and a minimum value of 20°, while the corresponding
values of m/n or a/b are 2.07 and 9.28, respective-

ly.

Thus for wire screens we can write the follow-
ing approximate expressions:

m = 0.830 o0*7 12)
and

%- 0.7905 o118 (13)
which are valid in the range 2 < a < 8. It should

be noted that the force on a typical node can be
expressed in terms of the apparent contact pressure,
the spacing between wires and the wire diameter:

F = Pc?= Puzbz

(14)
For typical contact pressures and wire screenms, it
can be shown that the load per node is quite small,
resulting in contact areas whose characteristic
dimensions are very small relative to the wire dia-
meter. This fact will be used in the subsequent
thermal analysis.

Thermal Problem

Since the semimajor axis of the elliptic com-
tact area is much smaller than the wire diameter,
it will be assumed that the thermal comstrictiom
resistance within the wire due to the elliptic con-
tact area can be approximated as the thermal con-
striction resistance within a half-space due to an
elliptic contact area.

It has been shown by Yovanovich(7) that the
general expression for the thermal conmstriction re-
sistance due to an isothermal elliptic contact area
supplying heat toa half-space can be determined by
means of the following expression:

T
R = we/éka (15)
where k is the thermal conductivity, a is the semi-
major axis of the elliptic contact area, and wg is

a geometric comstriction parameter defined as

T 2
Yo = 7 K(x)

(16)
In Eq. (16), K is the complete elliptic integral of
the first kind whose argument x is dependent upon
the ratio of the semimajor and semiminor axes im
the following manner:
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The comstriction parameter, Eq. (16), has been tab-
ulated by Yovanovich(8) for values of a/b running
from 1 to 10.

An approximate expression for Eq. (16) valid
for large values of m/an (or a/b) can be shown to be

T 2 m
Yo " 7 In(4 2) (18)
For m/n > 3, the difference between Eqs. (16) and

(18) is less than 1.7%.

When m = n, wT = 1 and Eq. (15) reduces to
the well-known solution for an isothermal circular
contact area of radius a.

The thermal constriction resistance within
the flat whose thermal and mechanical properties
are designated by the subscript 1 in contact with a
wire designated by the subscript 2 can now be
written as T

wel

R, = (19)
el 3 2 T
. 4k1m [ 3 Pt;zD AlZ]

/3

Since we are assuming the constriction resistance
within the wire due to the elliptic contact is
equivalent to the constriction resistance within a
half-space,we can write for this resistance:
T
weZ
2.2

E ; l/
4k2m [a Pa“D A12]

(20)

Ra2 3

Since wz degends only upon the ratio m/n, we can
put wgz = a1 - The total constriction resistance
due to-one elliptic contact area is the sum of Egs.
(19) and (20):
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where k. is the harmonic mean thermal conductivity
of the contact and is defined as

k12 = Zklkzl(k1 + kz) (22)
Similar arguments will allow us to write directly
the total constriction resistance due to the second
elliptic contact area formed between the wire and a
second flat whose thermal and physical properties
are designated by the subscript 3. Thus the total
resistance is
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The circuits shown in Fig. (4) can be re-
placed by those shown in Fig. (5). An examination
of these circuits leads to the conclusion that the
total electrical resistance of the typical element
can be expressed as

e B

R = Z (24)
independent of the wire/wire contact. Replacing
the electrical resistances Ry and R, by the equiv-
alent thermal comstriction resistances we can show
that the total constriction resistance of a typical
element ABCD is simply the sum of Eqs. (21) and
(23):

+ R

e23 (25)

R, = Ra12

Thermal Joint Conductance

Local Joint Conductance

It will be convenient for subsequent analyses
to define a dimensionless total resistance of a
typical element. Using the wire spacing ¢ as a
characteristic dimension of the joint and the ther-
mal conductivity of the wire, it can be shown that

*
R, = ck, R, (26)

2
where Rt’ given by Eq. (25), can be expressed as
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where the following dimensionless parameters have
been used:

p* = 2" - Ve, (28)
*

K], = 20k /) /(L + ky/k,] (29)

k;3 = 2(ky/k,)/[1 + ky/k,) (30)
* 1/3

E,, = [1+ EZ/Ell (31
* 1/3

323 = [1+ EZ/E3] (32)

It has_been assumed that the ratios (1 - v%)/

(1 - v3) and (1 - vi)/(l - v§) can be replaced by
unity with negligible error in the determination of
the dimensionless total resistance.

The local joint conductance can be determined
from the following relationship:
2
Q= hj ¢ AT = AT/Rt (33)
Eliminating AT from this relationship and defining
a dimensionless joint conductance as h.,c/k, we
note that this is equal to the reciproZal of the
dimensionless total resistance.

*

Combining the dimensionless pressure P with
the dimensionless joint conductance we can obtain
the following expression

2 1/3
P(1 - v))

— b

" 1 Ei; =8

where the geometric-physical-thermal parameter 8 is
defined as

(34)
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g = 1

(33)

For a joint consisting of identical materials, E
Eq = E5, ky = k3 = k2, the parameter 8 reduces to

(36)

g = [160 1/3 K iﬂ! [a + 311/3

+ 1

We note from Eq. (34) that the local joint conduct-
ance varies as P1/3, everything else being inde-
pendent of the load.

Overall Joint Conductance

If the local contact pressure is not constant
over the apparent contact area, the local joint
conductance will also vary over this area. It is
convenient for such joints, to define am overall or
average joint conductance. This can be done by in-
tegrating the product of the local comductance and
the local apparent contact area over the entire
contact area, then dividing by the total contact

area:
1
hj Aa ff hj dAa a7
A
a
where h, 1is given by Eqs. (34) and (35). It is

obviouajtha: whenever the contact pressure distri-
bution is uniform, the overall joint conductance
i8 equal to the local joint conductance.

Qut-of-Flatness Correction for the
Overall Conductance

To illustrate the effect of pressure distri-
bution, consider the elastic contact of two right-
circular cylinders having out-of-flatness dl and
d, as shown in Fig. 6. The radii of curvature of
tﬁe contacting surfaces can be expressed in terms
of the out-of-flatness and the cylinder radius §
approximately as

62 62
P17 2a; ™ °p 7 ag; (8
1 2

If the cylinders make elastic comtact over a
circular area wy“ where vy < §, the local pressure
distribution will be a maximum in the center of the
contact and zero everywhere outside the contact.
The local pressure can be expressed as

2
P = 1.5F - 5_11/2, O<r<y
2 2 - -
Y Y
(39)
P =g, Yy<r<s

where F is the total load on the iontact. The
apparent contact pressure is F/wé<,

1f now we place a screen between these con-
tacting cylinders, and assume the pressure distri-
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terval, steady state conditions were assumed to

prevail.

The length of time required for steady

state conditions ranged from 6 to 12 hours.

‘a Reduction

The experimental thermal joint conductance

values were determined from

- UL

h '__Q.Lé__
AT

i T1- T

where T% and T, are the temperatures of the bound-

per unit area.

aces of the joint, and Q/A is the heat flow
A linear least squares fit of the
test specimen axial centerline temperatures was

ing sur

made for each set of temperature data in order to

determine the interface temperatures.

These inter-

face temperatures were also checked by graphical

extrapolation of the centerline ;emperature-axial
location curves. The heat flux was then calculated
from the axial temperature gradient of the test
specimen temperatures and the thermal conductivity
at the mean temperature of the test specimen. The
heat flux value was then checked by subtracting the
estimated heat losses from the measured heat input.

Results and Discussion

Tables I - III contain the screen wire char-
acteristics, the surface characteristics of the con-
tacting specimens as well as the predicted and ex~
perimental values of the overall joint conductance.
The geometric and thermal characteristics of the
screen wires used in the tests varied greatly. For
example, the thermal conductivity ran from 10 to

he corresponding diameters ran from 0.0045 to

‘20 Btu/hr.sq.ft.%F; o ran from 2.22 to 5.35, and

0.025 inches. The contacting specimens wetre limit-
ed to aluminum and stainless steel. Their out-of -
flatness (OF) was determined to lie in a narrow
range of 18 to 25 uin.

The test results given in Table III show the
overall joint conductance varying over a very wide
range, running from a low of 7.2 Btu/hr-sq ft to a
high of 484 Btu/hr-sq ft. The lowest value was
obtained with a 10 mesh stainless steel screen
contacting stainless steel specimens at an apparent
contact pressure of 103 psi at a mean joint temper-
ature of 218°F. The highest value was obtained
with a 30 mesh copper screen contacting aluminum
specimens at a pressure of 233 psi at a temperature
of 110°F. The last five columns of Table III con-
tain the predicted and measured values of the over-
all joint conductance, and the corresponding per-
cent difference based upon the predicted values.
The values in the first column under h (theory)
are based upon a thermal comstriction parameter
which is valid for the special case of isothermal
elliptic contact areas, and a correction factor (CF)
given by Eq. (45). The OF values used to determine
the CF values are presented in Table II. The CF
values ranged from 0.33 to 0.88. The corresponding
column under percent difference is designated by a
superscript (a). It can be seen that the predicted
values are greater than those measured for all test
conditions. The greatest difference was observed
with the T3 test results and the least difference
was observed with the T6 test results.

Several factors can influence the predicted
values. It is our belief that the two most impor-
tant factors are the constriction parameter and the

OF. The constriction parameter enters directly in-
to the thermal resistance and, therefore, can have
a significant effect upon the predicted values of
the conductance. It is a fact that the constric—
tion parameter depends upon the boundary condition
over the conmtact area. A comstant flux or other
related boundary condition will require a constric-
tion parameter greater than the isothermal con-
striction parameter used here by as much as 12%.

It is also possible that the actual OF is up
to 50% larger than the reported values in Table II.

If we use a constriction parameter 127 larger
than the value given by Eq. (16) and an OF 50%
larger than those used previously, the predicted
valueg of the conductance are reduced by about 25%.
These new values and the corresponding perceat
difference are reported in Table III.

Tt should also be noted that the CF is a
function of the apparent contact pressure to the
4/9 power. From Eq. (34) we see that h is a
function of the contact pressure to the 1/3 power.
If these pressure effects are lumped together,

Eq. (44), we conclude that the overall joint con~
ductance should vary as apparent pressure to the
7/9 power. This is in good agreement with the con-
clusion of reference 4 that the joint conductance
depends upon the contact pressure to the 0.72 power.

Conclusions

A model has been developed for predicting the
overall joint conductance of screen wires placed
between smooth solids under vacuum conditions. The
model is based upon elasticity theory and the avail-
able thermal constriction resistance theory. A
dimensionless joint conductance number, Eq. 34,
has been obtained from a thermal analysis of a
typical element. This dimensionless joint con-
ductance shows clearly how the geometric, thermal,
and physical characteristics as well as the contact
pressure influence the local joint conductance. A
simple model is also presented for taking into
account the effect of out-of-flatness. There is
qualitative agreement with the available test data.

It is recommended that further work be dome
to determine the constriction parameter for a hard
(low conductivity), curved surface penetrating a
soft (high conductivity), flat surface. This would
correspond to a stainless steel screen contacting
an aluminum surface.

Further work should be done to determine the
effect of a screen placed between contacting smooth
curved solids upon the contact area and the pres-
sure distribution.
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