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Nomenclature :
a = distance from ground surface to origin of bicylindrical
£ = metric coefficient
k = thermal conductivity
Q@ = total heat flow rate per unit length of pipe
g = flux per unit area
R = thermal resistance
Ry -¢ = constant flux resistance
Rr - . = constant temperature resistance
ro = pipe radius
T = temperature
Ta = average surface temperature
bicylindrical coordinate
7 = bicylindrical coordinate
w = distance from ground surface to pipe center
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Introduction

The determination of the thermal resistance for heat transfer
between the surface of a buried pipe or a buried cylinder and
ground level is important and has been calculated for the con-
stant temperature boundary condition at the pipe surface [1-4].8
The method used most often is based upon the superposition of
infinite line source and sink solutions [1-3]. A solution based
upon bicylindrical coordinates is also available [4]. A buried cable
or a heating wire with uniform joulean heating will have a con-
stant flux condition. However, in real situations, the actual
boundary condition is not known exactly. It is felt that in most
cases, it will be between the constant temperature and the con-
stant flux condition. It becomes necessary then, to have the ther-
mal resistance values corresponding to these two extreme cases.
The thermal resistance to the constant flux condition is not avail-
able in conduction heat transfer texts, except reference [5], where
a solution based upon bicylindrical coordinates is given. This so-
lution in reference [5] is in error because the temperature and the
thermal resistance go to zero, for the same heat transfer, as the
pipe is displaced farther below ground level. This is obviously in-
correct. The purpose of this technical brief, therefore, is to fill this
gap and to point out the error in reference [5], so that we will
have the thermal resistance values corresponding to the extreme
cases, namely constant temperature and constant flux conditions.
This brief deals with the exact solution based upon bicylindrical
coordinates. The thermal resistance with a constant flux bounda-
Ty condition is compared with the well-known expression for the
constant temperature boundary condition.

Analysis .
The governing differential equation for steady heat transfer
through a homogeneous and isotropic medium of thermal conduc-
tivity & in bicylindrical coordinates is [4, 6]
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where 7 and ¢ are the bicylindrical coordinates, Fig. 1. The sur-
face of the ground is n = 0, and can have the temperature T = 0.
The surface of the pipe 7 = no, has a constant flux boundary con-
dition [4].
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The metric coefficient in the »-direction g,, i.e., normal to the
pipe surface, is given by the following expression 4, 6):

a
&n =
[cos k np —cos PJ?
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where a is the distance from the ground surface to the origin of
the coordjnate system, Fig. 1. By symmetry the other boundary
conditions are 6T /3y =0aty = O0and .

Equation (1) can be separated into two ordinary differential
equations whose solutions depend upon trigonometric as well as
hyperbolic functions. By the method of separation of variables,
the solution to equation (1) satisfying the boundary conditions is

Q 7 < e~™o .
Ty, ¥) = — [2- + ?1 o8 Wl sin k (nn) cos (n)]4)

where no is related to the pipe radius and the distance from
ground surface to the pipe center line as follows [4]:

" w =7, cos hn(', , ()

Equation (4) differs from the solution given in reference [5), in
that it does not contain the term 1/sin hno. The thermal resis-
tance will be defined as the difference between the average pipe
surface temperature and the ground surface temperature divided
by the total heat flow rate. Therefore

R, = 2 ®)
~ =7
where
f' T' [gt]nﬂ?o dlp .
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AT

with g, = g, for the bicylindrical s};stem [4, 6]. Upon substitution
of equation (4) into (7) and’evaluating, one obtains for the aver-
“age pipe surface temperature

o “2m,
T, = % (Lo + 2,31 9_nl tan h (nn,)] (8)

According to our definition of thermal resistance, the constant
flux resistance per unit length of pipe is therefore:

(o]

w =rq cosh 7,

u=r°sinh17°
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Table 1

R,..
w/rq o - RT—c
1.001 0.04 -20.21
1.005 0.10 9.07
1.010 0.14 6.44
1.050 0.31 2.97
1.1 0.44 2.18
1.2 0.62 1.66
1.3 0.76 1.44
1.4 0.87 1:32
1.5 0.96 1.25
1.6 1.05 1.20
1.7 1.12 1.16
1.8 1.19 1.14
1.9 1.26 1.11
2.0 1.32 1.10
3.0 1.76 1.03
4.0 2.08 1.015
5.0 2.29 1.009

10.0 2.99 1.002
7 1 &= e—2m|o
Reo = ok |k ?31 n tan & (o) ®

This expression can now be compared with the constant tempera-
ture resistance expression [1-3]

1 w RS
Ry, = 375 o [70' + (70') —-1] (10)
which can also be written as
= T
Rree = 9a1 (1)

The ratio of the constant flux resistance to the constant tempera-
ture resistance is simply: -

9-2""0

%ﬂ =14+ 2 i) tan k (nn,) 12)

T=c T =t
The ratio is shown in Table 1 for typical values of w/ro and corre-
sponding values of 5.

Conclusion

An exact solution for the constant flux boundary condition is
presented and the thermal resistance expression is compared with
the well-known constant temperature expression. It is seen in
equation (12) and Table 1, that the resistance for the constant
flux boundary condition is equal to the constant temperature re-
sistance plus an additional resistance which is due to the fact
that more heat leaves the bottom portion of the pipe under con-
stant flux conditions than under constant temperature condi-
tions. This effect is strongly dependent upon 5. If the pipe is
buried deeper than 5 pipe radii, the difference between the two
resistances is less than one nercent Tt can be secu Lhal for ail
practical purposes a pipe which is buried at a depth of 3 or more
pipe radii, can be treated as a pipe having constant temperature
boundary conditions. Also for a pipe-which is buried 1.5 radii or
more, the difference in the resistances corresponding to the two
extreme boundary conditions is 25 percent or less. Where there is
a possibility, that the actual boundary condition may lie in be-
tween the two extreme cases, we now have the opportunity to use
arealistic value, since we have solutions available for both cases.
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