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MODELING THE EFFECT OF AIR AND OIL UPON THE THERMAL
RESISTANCE OF A SPHERE-FLAT CONTACT

* Ak
M. Michael Yovanovich and W. W. Kitscha

Thermal Engineering Group

University of Waterloo

Waterloo, Ontario

Abgtract

An analysis is presented for predicting the
overall thermal resistance of sphere-flat contacts
as a function of solid constriction resistance
based upon elasticity theory, radiative heat trans-
fer and conductive resistance of the gas gap as a
function of gas pressure ranging from vacuum to at=-
mospheric conditions. Both coupled and decoupled
solid/gas conduction heat transfer models are coa-
sidered. The effect of ofl, with and without gas
present, is considered. Excellent agreement is
observed between the theory and test data based upon
air and argon over the gas pressure range from

1073 mm Hg to atmospheric conditions for two differ-
ent spherical specimens.
Nomenclature

A = heat transfer area

a = contact radius

D = gsphere diameter

De = gas layer thickness

E = modulus of elasticity

F = direct view factor between black surfaces

F = view factor between black surfaces with
reradiating surfaces

f‘ = view factor between grey surfaces with re-
radiating surfaces

Gl = 1integral for gas resistance under contin-
uum conditions, Eq. (24)

Go = integral for oil resistance, Eq. (35)

G2 = 1integral for gas resistance in slip and
transition regimes, Eq. (41)

K = complete elliptic integral of the first
kind

Kn = Knudsen number (A/§)

k = thermal conductivity

k; = dimensionless gas conductivity (kg/ks)

ko = dimensionless oil conductivity (kolks)

k;m = dimensionless gas conductivity under con-
tinuum conditions (kgw/ks)

L = dimensionless contact parameter, Eq. (1)

m = contact size parameter

* Professor of Mechanical Engineering, University
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** NRC Graduate Research Assistant, Atomic Energy of
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N = normal contact load

a = contact size parameter

P = gas pressure (mm Hg)

Pi = dimensionless gas pressure (760/Pg)

Q = heat flow rate (W)

R = thermal resistance (°K/W)

R: - = dimensionless thermal resistance (Dks R)
R = dimensionless constriction resistance
R2 = dimensionless gas resistance

RS = dimensionless oil resistance

R: = dimensionless radiative resistance

R: = dimensionless total resistance

r = radial coordinate

T = absolute temperature (°K)

Tc = contact temperature, Eq. (25)

™ = dimensionless absolute temperature (T/288)
x = dimensionless radial position (r/a)

z = coordinate normal to contact plane

Greek Symbols

a = accommodation coefficient

8 = lower limit for gas with oil present,
Eqs. (23) and (35)

Y = upper limit for gas in slip and transition
regimes, Eq. (43)

3 = lower limit of integration for oil or air

8 = gas gap thickness, Eq. (2) or Eq. (3)

€ = emissivity

zz = argument for complete elliptic integral,
Eq. (6)

A = mean free path of gas

v = Poisson's ratio

L1 = P{

o = radius of curvature of contacting solids

o* = radius of curvature of contact, Eq. (7)

a = Stefan-Boltzmann constant

w* = thermal constriction parameter, Eq.  (6)

Subscripts

1 = sphere

2 = flat

3 = reradiating surfaces
=« = continuum




c = constriction
g = gas
o = oil
r = radiation
s = harmonic mean value of conductivity,
Eq. (5)
t = total
Introduction

Heat transfer across bearings is of great
interest to those thermal engineers who are re-
sponsible for the thermal design of spacecraft.
Jansson obtained experimental data for dry and
lubricated instrument bearings in a vacuum.
Yovanovich(2~4) developed a general comstriction
resistance theory for contacting paraboloids which
agreed with the vacuum test data obtained with un=-
lubricated instrument bearings. This theory was
based upon negligible radiation effects and no con-
tribution to heat transfer due to air or oil. This
paper is an extension of that theory to imclude
radiation effects as well as gas conduction over
the pressure range of one atmosphere to 1072 mm Hg.
The effect of an oil with and without air present
is also considered. The theory is compared with
test data obtained for a sphere in elastic contact
with a flat.

Analysis

Problem Statement

Consider the thermal resistance to heat trans-
fer across the sphere-flat contact shown in Fig. 1.
Heat can be transmitted across the contact plane in
the following ways: a) conduction through the
contact area, b) radiative transfer across the gap
between the sphere and flat outside the contact
area, c¢) conduction through the gas which may be
present in the gap, d) conduction through a fluid
such as oil which may be present in a portion of
the gap, Fig. 1lb, and e) convective effects within
the gas under special conditions. If all these
mechanisms are independent of each other and are
present simultaneously, they can be considered to
be thermally connected in parallel; i.e., a de-
coupled model is assumed.
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Fig. 1 Schematic of flat-sphere contact

This paper will consider thermal constriction
resistance due to the heat flow through the contact
area, radiative resistance across the gap, con-
ductive gas resistance based upon coupled and de-
coupled models for gas pressures ranging from
vacuum (lO‘5 mn Hg) up to atmospheric conditions,
and conductive resistance due to a fluid region.
Free convection is assumed to be negligible.

System Geometry

Consider the contact between a smooth sphere
of diameter D and a smooth flat surface, Fig. 2.
For convenience the coordinates (r, z) are chosen
with the origin placed in the center of the contact
area. The two important geometric parameters:
contact radius a and local gap thickness § can be
calculated by means of the following expressions
derived from elasticity theory:(5)
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Here N is the normal contact load, while E_, Ez
and v., Vg are the elastic properties of t%e sphere

and f}at. The dimensionless contact parameter D/2a
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Fig. 2 Schematic of elastic contact
and gap thickness

will be denoted by L, which for a fixed system
depends only upon the contact load. For the local
gap thickness we have from elasticity theory

2
2 $ L2 = 02 sin"l L. 1M1 - %1 +
D ™ X 2

-Tlsz-l ()

where x = r/a and L is given by Eq. (1). Eq. 2)
includes the overall displacement of the sphere
under the load N. There is a simpler geometric
expression which neglects the bulk deformation of

the sphere:
2%L=/L2-1-/L2-x2 (3)

which is comparable to Eq. (2) for most values of
L and is amenable to integration. Eq. (3) will be
used throughout this paper whenever thermal resist-
ance of the air or oil is considered.

Thermal Resistances

Constriction Resistance

In the analyses to follow it will be assumed
that the heat flow rate through the contact area
is always present and independent of the heat flow
rates through the gas, through the oil and across
the gap by means of radiation. The assumption is
clearly valid for the extreme case of a dry con-




tact under vacuum conditiouns when only comstriction
and radiation resistances are present. The
assumption is probably a good approximation for the
other extreme case of a lubricated contact under
atmospheric conditions.

It is further assumed that the general con-
striction resistance expression developed by(a)
Yovanovich for contacting smooth paraboloids is
applicable for all conditions provided surface
roughness effects are negligible:

* *
KR = v (1/ 11/3 ()
se 1.y 1-4vE 3
LN 1 2
A5 =
! 1 2

where the harmonic mean thermal conductivity ks of
the comtacting solids is usually writtem as

ks =2 klkz/(k1 + kz) (s)

*
The constriction parameter y can be evaluated by
means of the following expression :

2
* 2 K(xT)
- (6)

14

where K is the complete_elliptic intsgral of the
first kind of modulus «“ = 1 - (n/m)°; m and n are
dimensionless geometric parameters which are
functions of the geometry of the contacting para-

boloids. The geometric parameter p 1is defined
as
i; = %— + 27 + %— + l7 @))
P 1 oy 2 Py

1
where py, p, are the principal radii of curvature
for solid 1 and o3, ¢, are the principal radii of
curvature for solid 27 Eq. (4) assumes a very
simple form whenever a sphere gpl = p. = D/2) is
in contact with a flat (p, = p, = @).” For this
special case of contacting paraboloids, ¥ o 1
because K(k“) = /2 and m = n = 1. Also p becomes
simply D/2, and, therefore, Eq. (4) reduces to(4)

kR = (8)
s'c i 1- v§ 1/3
WD ¢ + )

1 2

Multiplying through by the sphere diameter to non-
dimensionalize Eq. (8), we obtain

*
DksRc =R =L ¢

where L is the dimensionless loading parameter
defined by Eq. (1).

Radiative Resistance

Consider the radiation heat transfer between
a hemispherical surface having emissivity €, and a
flat disc having emissivity €99 completely &nclosed
by a reradiating surface €4 as shown schematically
in Fig. 3. To make the problem tractable the
hemispherical surface and the flat are assumed to
be isothermal having temperatures Tl and TZ, re-
spectively. According to the Stefan-Boltzmann Law,
the net radiative heat transfer between the hemi-
sphere and the flat in the presence of reradiating

Fig. 3 Model for radiation resistance
surfaces is given by
4 4
Q "4 }'12 o [T) - T,] (10)
where the heat transfer area is Ay = (ﬂQZ/A)
(1 - 1/L2]. The grey-body view factor f 2 for the

enclosure shown in Fig. 3 can be determined by
means of the following expression :

.
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In Eq. (11), F , §13 and F 3 are the view factors
between black surfacés in tﬁe presence of re-
radiating surfaces. The direct view factor
between a hemjisphere and a disc which are in point

contact 13(1

1 1 :
F,, =% [1 ~-—=] (12)
21 2 /z
It will be assumed that Eq. (12) is valid for comn-
tacting surfaces provided L > 10. Using the
reciprocity relationship:
AF., = AF (13)

1712 2°21

the direct view factor F can be evaluated.
Having determined, for the system shown in Fig. 3,
that F., = 0.586, Fl = 0,414 and F 3" 0.707, it
can be easily shown ghac BEq. (11) y%elds(ll)

1 1 2

— -+

P12

+ 0.5766 (14)

For moderate temperature drops across the gap, the
radiative resistance for L > 10 can be approximated
as

1
A1f12 4o Tm

R =

- (15

3

where T 1s the mean absolute temperature of the
gap. Using A, = 7D%/4 and Eq. (14), the dimen-
sionless expression for the radiative resistance
can be written as




+ 0.5766
Dk R_ = R (16)
srT £ nDGTi

Total Resistance Under Vacuum Conditions

If we assume that the constriction resistance
and the radiative resistance are thermally con~-
nected in parallel, the total resistance under
vacuum conditions with no oil present is simply

w'H

S w an
t [ T

Multiplying each term by l/Dks to non-dimension-
alize, and after rearranging, we obtain

* *
R = L/(1+L/R) (18)

for the dimensionless total resistance under
vacuum conditions including radiative effects.

Gas Conduction Under Continuum Conditiomns (Kn - 0)

The resistance to conduction heat transfer
through the gas gap under atmospheric pressure is
very complex because the solid boundaries are not
isothermal, and the local gap thickness varies
monotonically from a value of zero adjacent to the
contact area (x = 1) to practically the radius of
the contacting sphere at the outer region of the
contact plane (x = L). If we define a local
pseudo-Knudsen number as the ratio of the mean
free path of the gas corresponding to the average
gas temperature and pressure within the gas gap to
the local gas gap thickness

=4 (19)
it can be shown that after substituting Eq. (3)
for § into Eq. (19), the following expression:

X /A A
5’3'2 'D—Es/l-m (20)

relates the dimensionless radial position to A/D
which is the maximum value of the local pseudo-
Knudsen number based upon the diameter of the

hemisphere and Kn. The mean free path A at any

temperature and pressure can be determined from(13)
T 760
A=A, Ggp) 6—;;) 21

where A 1is the mean free path under atmospheric
con%it%ons. For air at 15°C, A_ = 6.40 x 10~6
cm. (137, ®

It 1s customary when considering heat trans-
fer through a gas layer bounded by infinitely
large, parallel, isothermal walls to assume con-
tinuum conditions to prevail throughout the gas
layer and also within the gas volume adjacent to
the wall provided the Knudsen number is much
smaller than unity, i.e., Kn < 0.0l. If this
value of Kn is*used ig Eq. (20), with D = 2.54 cm,
L = 100, and T and P_ both equal to unity, it can
be shown that x = 3.2% This means that the gas
gap region between x = 1 and x = 3.2 cannot be

treated as a continuum, and only the region
3.2 < x < L can be so considered.

In both decoupled and coupled models it will
be assumed that there exists a region adjacent to
the contact area which must be excluded when con-
sidering gas conduction through a coatinuum. In
both models it will be assumed that the gas con-
ductivity is uniform throughout the entire gas gap
region considered to be a continuum. It will be
assumed that the heat conducted through the gas
flows within annular regions bounded by adiabatic
walls which are perpendicular to the contact plane,
Fig. 4.

dividing flow
1/ tine

Fig. 4 Model for gas resistance

Decoupled Model

In this model it will be assumed that the
solid surfaces are isothermal, therefore the com-
duction resistance of an elemental volume of gas
having local thickness & and flow area 2rrdr is
simply

s

ng = kg 2rrdr

(22)

where k_ 1is the gas conductivity. After substi-
tution 8f Eq. (3) for §, non~dimensionalizing, and
integrating from x = £ > 1 to x = L, one obtains

i __t_ = k* G, (L,£) (23)
* Dk R g 1 ’
Rg sg

where the integral in Eq. (23) is defined as

A2 .y
AT AT 2
T3

- /L7 - g (24)

T 2
6, e =% AZ- 11 ¢

where L is the dimensionless loading parameter,
Eq. (1), and & is the lower limit of integration
based upon the definition of the local pseudo-
Knudsen aumber, Eq. (19).

Coupled Model

This model considers the coupling of the heat
flow rate through the contact area, Qc’ called the
primary flow rate and the heat flow rate through
the gas, Q_, called the secondary flow rate. In
this model®it is hypothesized that the temperature
distributions over the hemispherical surface and
the flat are determined by the heat flow rate




through the contact area and the corresponding
thermal comstriction resistance. It is further
assumed that the constriction resistance of the
so0lid with gas present in the gap is practically
identical to the solid resistance with no gas
present, i.e., under vacuum conditions. These
assumptions are certain to be valid when the con-
tact area is large and the constriction resistance
is small relative to the gas resistance. The
temperature distribution over the surface of the
flat under vgcuum conditions is according to
Yovanovich(7

T; - TZ - [Qc/2ﬂkza] tan-l /(r/a)2 -1 (25)

where T, is the uniform temperature of the conmtact
area, Tz is the surface temperature at any position
r and ky is the thermal conductivity of the solid.
The heat flow is into the flat. As a first approx-
imation it will be assumed that over the surface

of the hemisphere one can write a similar ex-
pression

T, - T_ = [Q/27ka] tant Vr/a)? -1 (26)

1

where clearly the heat flows out of the hemigphere.
Adding Eqs. (25) and (26) yields

T, - T2 = [Qc/nksa] tan-l /(r/a)2 -1 @n

1

which is the local temperature drop across the gas
gap. The harmonic mean thermal conductivity is
defined by Eq. (5). According to Fourier the
elemental heat flow rate through the annular region
is given by

(T, - 1,
dQ = k ————— 2rrdr 28
Q =k, — (28)
Upon substitution of Eq. (3) for §, Eq. (27) for
(T, - T,), non-dimensionalizing and then integrat-
ing from x = £ > 1 to x = L, one obtains the
following relationship between the solid and gas
heat flow rates:

L meeem——
qQ k 7 -1 /2 _
%_ (__g_) (k_s) - X tan »/x 1 dx (29)

Q j
©E L ATo1- Ao

The integral in Eq. (29) is definsd as ¢(L,&) and
must be integrated numerically 1) values of ¢
for L ranging from 1.1 to 20 are shown in Fig. 5
to illustrate how ¢ behaves as L and { are varied.

The total heat flow rate across the sphere-
flat contact plane is according to Eq. (29)

Q = Q [1+2k; o(L,6)] (30)

t

where k* is the dimensionless gas conductivity.

The ovePall resistance of the sphere-flat contact,
including the effect of a gas, is defined as the
overall temperature drop across the contact divided
by the total heat flow rate. The overall temper-
ature drop is assumed to be the product of the
heat flow rate through the contact area and the
constriction resistance under vacuum conditionms.
Thus we have

RC
R, = (31)

t *
1+2 kg ¢(L,8)

where Rc is given by Eq. (8). The effect of
radiation can be taken into consideration by simply
putting Eq. (16) in parallel with Eq. (31). After
normalizing Eq. (31) we obtain for the coupled
model with radiation

*
1+2k oL,
2 €,8)

1 1
;; = L + ;; (32)
t T
L [4 XN
2 .8
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Fig. 5 Coupled model parameter versus dimension-

less load parameter

Thermal Resistance With 0il Under Vacuum Conditions

Consider the heat transfer across a sphere-
flat contact under vacuum conditions with oil hav-
ing a thermal conductivity k, occupying the gap
region between ¢ > 1 and B < L, Fig. 6. Utilizing

a7 K Sxe(0i)

Fig. 6 Model for oil and gas resistance




the decoupled model described above, the total re-
sistance of the oil can be evaluated by means of
the following expression:

x d x
° ,;E /{.Z-l-JLZ-xZ

The oil resistance can be normalized using the
harmonic mean thermal conductivity kg. Thus
Eq. (33) becomes

(33)

1 1 *
Serrer ok 6, (L.88) (34)
Ro s o

*

where k, = k_/k_ and the integral G (L,8,§) is
o' "s o

given by

VA b A
A1 A2

+A.2-82—/{2-£2} (35)

Typical values of G (L,8,£) are shown in Figs. 7-9.
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Fig. 7 0il constriction parameter for £ = 2.0

The lower limit £ > 1 has been used because it is
uncertain whether the oil can occupy the gas gap
region adjacent to the contact area, especially
when the oil is added to sphere-flat contacts
under atmospheric conditions. It is assumed that
gome air is always trapped during the addition of
the oil, and this air remains in the region § = 1
to £ > 1 under vacuum conditions. If one assumes
that the presence of the oil does not greatly
alter the flow pattern within the solid, Fig. 6,
then as a first approximation it can be assumed
that the constriction resistance with oil is
essentially the same as .the constriction resist-
ance without oil. Therefore the total resistance

with oil, after non-dimensionalizing, is simply

B

=

*
t

w‘r-‘

0 *

WlH

o »

v

*
= (1/L) + ko Go (L,3,8) (36)

Radiative effects can be considered by simply

connecting in parallel a modified radiative re-
sistance because the oil is normally opaque and
obscures a certain portion of the contact plane.
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Fig. 8 01l constriction parameter for £ = 4.0
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Fig. 9 0il constriction parameter for § = 6.0

Thermal Resistance With 01l Under Continuum
Conditions

In this analysis it is assumed that oil
occupies the gap region between x = § and x = 8
while alr considered to be a continuum occupies
the region between x = 8 and x = L. The gap
region adjacent to the contact area may be filled
with a gas which does not contribute to the heat
transfer across the sphere-flat contact. The con-
striction resistance 1s assumed to be equal to the




constriction resistance under vacuum conditions
with no oil present. The decoupled model will be
assumed. The solid, air and oil resigtances are
thermally connected in prallel and are given by
Eqs. (9), (23) and (34), respectively; and there-
fore the dimensionless total resistance is given
by

1 1 * *
* = L + kg Gl (L,B) + kO GO (L-B,E) (37)
t

~

where Gy and G, are defined by Eqs. (24) and (35),
respec:}vely. If radiative effects are important,
a modified radiative resistance can be connected in
parallel with the total resistance given above.

Thermal Resistance in the Slip and Transition
Regimes(13’ 14)

The continuum regime is characterized by very
small Knudsen numbers. In this regime molecular
interactions predominate and the temperature
within a gas layer bounded by infinite parallel,
isothermal walls varies linearly within the gas
and the temperature of the gas adjacent to the
walls has the same temperature as the walls. When
the gas pressure is reduced, the mean free path of
the gas increases according to Eq. (21). When the
Knudsen number is slightly smaller than unity, the
gas far from the walls can still be considered as
a continuum with the gas temperature still varying
linearly, but adjacent to both walls there is a
thin region in which the gas will not have the
same temperature as the walls; there will be a
temperature discontinuity between the gas and wall
because the gas molecules are not able to come
into thermal equilibrium with the wall molecules.
This regime is often called the slip flow regime.
If the gas pressure is reduced even further, the
mean free path increases and becomes comparable to
the gas thickness. In this regime molecular inter-
actions and molecular/wall interactions are
equally frequent. This means that the gas mole-
cules in the vicinity of the wall are influenced
by the wall, by the gas molecules in the middle of
the layer as well as gas molecules leaving the
other wall. In this tramsition regime, there is a
temperature discontinuity at both walls as well as
large temperature gradients within the gas adjoin-
ing the walls. This temperature gradient decreases
in magnitude as one moves from either wall toward
the center of the gas layer. '

Heat transfer through the gas layer under
the conditions described above is usually handled
by considering the gas to have an effective
thermal conductivity related to the conductivity
under continuum conditions in the following
manner:

k
ko = A E= 2 7 -
)4 -a -,
© T .,760, ! 1 2
L+ 167 5= Gggd (5 ) o~ + —5—=~
e g 1 !

(38)

where De is the gas layer thickness, T and P_ are
the average gas temperature and pressure, an ay
and a, are the accommodation coefficients between
the gas and wall. Eq. (38) is strictly valid for
a diatomic gas bounded by infinitely large,
parallel, isothermal walls. As a first approxi-

mation it will be assumed that Eq. (38) can be
used to predict the effect of local slip and trans-~
ition regime conditions. Using the decoupled
model, Eq. (22), the total gas resistance can be
evaluated as follows:

-L

1 gg@ 27rrdr
- T (39)
8 Jra 81+ 1.67 =1 a]
[+]
P
g

where § is the local gas gap thickness and a is

the accommodation parameter. The lower limit of
integration will be x = £ > 1, corresponding to
Knudsen numbers which are equal to about 10. After
non~dimensionalizing and integrating one obtains
the following expression:

1 * “
;; - kgg GZ (L,8,8) (40)
|4
where the integral G2 (L,B,&) is defined as

G2 (L,8,8) = % - /£2 - 52 + [/£2 - 1+(3.36alL)-

A Ty
® g

/ff"" X k * \
L°-1+3.3aLA_T/P g

In ( £ ) @D
A2 -1+ 3%t T, - A% gt

*
where Ax = A_/D. Eq. (41) reduces to Eq. (24)
when P8 = 1 and 8 = L.

The total resistance of a sphere-flat contact
in the slip or transition regimes can now be ex-
pressed in the following dimensionless form:

Lol l v 6 @se (42)
* L * ge 2
Rt Rr

where the first two terms on the right-hand side
of Eq. (42) are the constriction and radiative
resistances, respectively. All three resistances
are assumed to be independent.

The presence of 01l can be easily taken into
account by simply putting the oil resistance in
parallel with the constriction and gas resistances.
If the oil occupies the gas gap region between
x = & and x = 8, and the gas is in the slip or
trangition regimes between x = 8 and x = y < L,
then the total resistance can be evaluated by
means of the following expression:

b P~

(o N

1 * *
= T + kO GO (L’B)E) + kg“ Gz (L)Y)B) (1‘3)

Comparison Between Theory and Test Results

The total resistance expressions dev%loped
in this paper are compared with test data{ll, 12)
obtained with smooth, polished hemispheres having
diameters of 2.54 and 5.08 cm, respectively. The
flats had a rms roughness of 0.12u. The




mechanical load on the contact ranged from 1.64 to
47.7 kg. The gases used in the tests were air and
argon. The gas pressure ranged from 106 wm Hg to
760 mm Hg. Vacuum oil was used to verify the
analysis based upon oil being presemt in a portiom
of the gap. The temperature of the interface
ranged from 3049K to 332°K. All tests were con-
ducted during the first loading cycle. The elastic
properties of the hemispheres and flat were iden-
tical; the modulus of elasticity was 2.11 x 106
kg/cm2 and Poisson's ratio was taken to be 0.30.
The thermal conductivities of the hemispheres were
determined to be 0.50 and 0.41 W/emPK for the 2.54
cm and 5.08 cm test specimens, respectively. The
emissivities of the 2.54 cm hemisphere-flat tests
were assumed to be 0.1 and 0.9 respectively(ll).
For the 5.08 cm hemisphere~flat tests, the emiss-
ivities were taken to be 0.3 and 0.8, respectively.
These values are not critical because the radiative
resistances were very. large. It was assumed that
the accommodation coefficients for the air tests
were 0.87 and 0.92 . For the argon tests these
values were taken to be 0.90 and 0.90. Continuum
conditions were assumed to exist within the gas
gap (£ > 1) for all pressures greater than 100 mm
Hg. The slip and transition analysis was assumed
to be valid in the pressure range from 0.1 mm to
100 mm Hg.

Fig. 10 shows the excellent agreement over
the entire load range between the vacuum test data
including radiative effects for the two test
specimens and the theory, Eq. (18). It is remark-
able that the excellent agreement for the first
loading cycle, persists down to L = 35,4 where the
flat hag experienced substantial plastic deform-
ation(13),
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Fig. 10 Comparison of constrictioan theory
and test data

The excellent agreement between both decoupled
and coupled models under continuum conditions;
Eqs. (18) and (23) for the decoupled system, and
Eq. (32) for the coupled as shown in Tables 1 - S
for the 2.54 cm hemisphere with air and argon
present in the gas gap.

* *
Table 1 Predicted R, and R, for Air and

D = 2.54 cm. Decoupled Model

%* Rg
L R £="2.3 3.0 35
115.1  108.8 79.0 83.7 87.9
103.2 98.1 81.4 86.3 90.8
76.0 73.3 89.1 95.1 100.5
65.4 63.3 93.2 . 99.8 105.8
50.0 48.8 102.1 110.0 117.3
45.1 44.1 105.6 114.0 122.0
37.4 36.7 113.3 123.1 132.4

Table 2 Comparison Between Theory and Test for
Air and D = 2.54 cm. Decoupled Model

R_(theory)
* 1) .

L R (test) ™' —— 7.0 35
115.1 47.5 45.8 47.3 48.6
103.2  45.0 44.5 45.9 47.2

76.0  42.1 40.2 41.4 42.4

65.4 37.3 37.3 - 38.8 39.6
50.0 3.4 33.0 33.8 3.5
45.1 32.5 3.1 31.8 32.9
7.4 27.3 27.7 28.3 28.8
Table 3 Predicted R. for Air and D = 2.54 cam.
Coupled Mod&1
= *
R
L L
£ =75 3.0 3.5
115.1 80.7 84.2 87.8
103.2 83.8 87.6 91.4
76.0 93.5 98.2 102.9
65.4 98.7 103.9 109.3
50.0 109.9 116.3 123.0
45.1 114.4 121.3 128.6
37.4 123.9 132.0 140.6

Table 4 Comparison Between Theory and Test for
Air and D = 2.54 cm. Coupled Model

%*
R_(theory)

* 11) £
L Rt(test) £=3.3 370 35
115.1 47.5 46.3 47.5 48.6
103.2 45.0 45.2 46.3 47.3
76.0 42.1 41.1 42.0 42.8
65.4 37.3 38.6 39.4 40.1
50.0 34.4 33.8 3.4 31.9
45.1 32.5 31.8 32.3 32.8
37.4 27.3 28.3 28.7 29.1




Table 5 Comparison Between Theory and Test for Air and Argonm,
D = 2.54 cm. Decoupled Model at £ = 3.0

Air Argon
*

L R:(test)(ll) R:(theory) % Error R:(test)(ll) Rt(theory) % Error
115.1 47.5 47.3 5 57.8 58.3 0.9
103.2 _ 45.0 45.9 1 — — —_—

76.0 42.1 41.4 9 48.3 48.4 0.0
65.4 37.3 38.8 8 —_— — _—
50.0 34.4 33.8 8 39.2 37.7 -4.0
45.1 32.5 31.8 1 —_— — —_—
37.4 27.3 28.3 7 29.7 30.6 3.1

Tables 1l and 3 contain the predicted values
of R* and R® for air based upon the decoupled and
coupied modéls, respectively. Values of Rg at
three different lower limits £ are shown for
various values of L which ranged from 115.1 to
37.4. It will be noted that for corresponding
values of £ there is a slight difference between
the decoupled and coupled models. The difference
is least at the smallest mechanical loads, and is
the greatest at the largest mechanical loads. The
difference between the two models also decreases
with increasing £. Tables 2 and 4 show the com-
parison between total resistance test data for air
and the predicted values of total resistance based
upon the decoupled and coupled models. It can be
seen that the two models yield comparable values
for the three values of the lower limit £. Ex-
cellent agreement is observed between the total
resistance test data for both air and argon and
the predicted values based upon the decoupled
model at £ = 3.0, Table 5. It can be seen that
the maximum error is -4.0% which occurs at L = 50.0
for the argon test. A slightly better agreement is
observed between the test data and the coupled
model theory at £ = 3.0.

Test data(ll) for the 5.08 cm hemisphere were
obtained with air and argon, and it can be report-
ed that there was excellent agreement between the
tests and the predicted values based upon the de-
coupled and coupled models when £ = 4.0. This is
consistent with the predicted values of £ based
upon' Eq. (20), which shows clearly that for a
larger curvature, £ will be greater because L will
be larger for the same mechanical load.

Table 6 shows the comparison between some test
data with o0il present under atmospheric conditions
and the decoupled model, Eq. (37). Radiative
effects were negligible and therefore not con-
sidered. It can be seen that there is a very good
agreement when the lower limit for the oil resigt-
ance is in the range 3.0 to 4.0 for the 2.54 cm
test specimen and in the range 4.0 to 4.5 for the
5.08 cm specimen. The upper limit for the oil was
determined photographically. It can be seen that
the oil resistance 1s quite sensitive to the
parameter § because the percent error changes from
negative values for the smaller value of £ to
positive values for the larger value. The fact
that all three tests indicate the same values of
the lower limit £ is consistent with the mann?r }n
which the oil was added to the test specimens 11
The gap region adjacent to the contact area was
occupied by trapped air when the oil was added.
Surface tension prevented the oil from completely
wetting the hemisphere and flat in the gap region
1 <g< 3 to 4.

In Table 7 one can see the comparison
between theory and test under vacuum conditions
corresponding to 106 mm Hg when the gas comn-
duction is negligible. Since the radiative effects
are negligible, only solid constriction resistance
and oil resistances are present. The total re-
sistance, Eq. (36), is a function of L, 8, £ and
ko.

It can be seen that when the gas is not
present the total resistance is quite sensitive to
the lower limit £. For example, the percent error
changes from -6.2 to 4.5 as £ goes from 3.5 to 4.5
in the first test. Similar observations were made
with the other tests. The vacuum test results are
consistent with the continuum test results in the
fact that the same values of the lower limit £
yleld the best agreement between theory and test.
As expected the presence of oil makes the total
resistance less sensitive to the gas pressure.
With oil present the total resistance changes by
about 10Z as the gas pressure is reduced from
atmospheric to vacuum conditions. On the other
hand, without oil, the total resistance is very
sensitive to the gas pressure, depending upon the
magnitude of the constriction resistance.

The predicted total resistance, Eqs. (41) and
(42), in the slip and transition regimes without
oil in the gap is compared with the air and argon
test data in Table 8. In the comparison it is
assumed that the predicted values of resistance
are valid for gas pressures ranging from about
0.10 to 100 mm Hg. Very good agreement is obtained
for air and argon for both sizes of spheres over
the load range L = 37.4 to 179.5 when the lower
limit £ is in the range of 2 to 5. In this range
of £, the local pseudo-Knudsen number varies from
about 0.02 to 30 depending upon L and P, for all
the tests conducted. For the majority gf tests
Kn ranges between 0.1 and 10.

Conclusions

Decoupled and coupled models are presented
for predicting the overall thermal resistance of a
sphere-flat contact with and without oil over the
gas pressure range from vacuum to atmospheric con-
ditions. There is excellent agreement between
theory and test data for air and argon gas.: The
simple decoupled model is shown to be comparable
to the more complex coupled model over the entire
load range for both air and argon under continuum
conditions. Elasticity theory can be used to pre-
dict the contact area and the constriction resist-
ance during the first loading cycle up to a rela-

tive contact of 3%, at which point both the sphere
and flat have undergone plastic deformatiom.

|




Table 6 Comparison Between Theory and Test Data with 0il Under

Continuum Conditionmns.

Decoupled Model,

‘II’ * * * 2t R* 7 E A
D L 8 £ Rc Rg R . t rror B
cm
Eq. (37) Tesc(ll)
2.54 65.4 18.0 3.5 63.4 260.8 36.8 21.4 22.2 ~3.8
65.4 18.0 4,0 63.4 260.8 40.3 22.5 22.2 1.4 _
2.54 45.1 8.7 3.0 44,1 - 199.6 55.0 21.8 22.3 -2.5
45.1 8.7 3.5 44.1 199.6 64.9 23.2 22.3 3.7 -
5.08 93.4 12.3 4.0 90.1 211.3 47.8 27.2 28.0 =3.3
93.4 12.3 4.5 90.1 211.3 53.5 29.0 28.0 3:$ .
Table 7 Comparison Between Theory and Test Data with Oil Under —
Vacuum Conditions. Decoupled Model . o
* * % * . & y
D L B8 & Rc R Ro Rt Rt Error B
CHm
Eq. (36) Test D
2.54 65.4 18.0 3.5 63.1 @ 37.2 23.4 24.8 -6.2
4.0 63.1 ® 40.7 24.7 24.8 -0.5 —
4.5 63.1 ® 44,3 26.0 24.8 4.5
2.54 65.4 8.7 3.0 43.9 @ 55.5 24.5 26.0 -5.8 —
3.5 43,9 ® 65.5 26.3 26.0 1.3
4.0 43.9 ® 77.2 28.0 26.0 7.3 o
5.08 93.4 12.3 3.5 89.6 L 42.8 29.0 31.0 -7.1
4.0 89.6 © 48.1 31.3 31.0 1.0 ,
4,5 89.6 o 54.0 33.7 31.0 8.0 \> —
Table 8 Comparison Between Theory and Test Data. Slip and Transition Regimes. n
G L P Ka R * * * N
D as g g - Rg Rt Rt % Error
cm mm Hg Eq. (42) Test(ll) -
2.54 Argon 115 80.0 2.0 0.482 108.5 126.6 58.4 58.5 0.7 —
5.0 0.062 108.5 153.0 63.5 58.5 7.3
76 20.0 2.0 0.838 73.1 153.7 49.5 51.7 4.4
5.0 0.105 73.1 183.9 52.3 51.7 1.1 o
50 20.0 2.0 0.361 48.7 161.2 37.4 39.3 -5.2
5.0 0.045 48.7 213.0 39.6 39.3 0.7 _
115 10.0 2.0 3.875 108.4 165.2 65.4 62.8 4.1
5.0 0.484 108.4 178.9 67.5 62.8 7.0
115 4.9 2.0 7.950 108.3 190.9 69.1 67.8 1.6 —
5.0 0.993 108.3 199.1 70.1 67.8 3.3
37.4 3.0 2.0 1.353 36.7 221.9 31.5 31.2 1.0 .
5.0 0.169 36.7 271.3 32.3 31.2 3.5
76 2.4 2.0 7.06 73.0 225.0 55.1 57.2 -3.8
5.0 0.88 73.0 238.0 55.9 57.2 -2.5 —
76.0 0.7 2.0 24.4 72.9 315.9 59.2 59.5 -0.4
5.0 3.05 72.9 323.7 59.5 59.5 0.0
103.0 1.1 2.0 27.32 97.7 189.5 64.4 63.3 1.8 -
5.0 3.413 97.7 193.1 64.4 63.3 2.4
50.0 0.7 2.0 10.06 48.7 218.9 39.8 40.9 2.6 _
5.0 1.255 48.7 231.6 40.2 40.9 -1.6
45,1 0.45 2.0 12,73 44.0 254.4 37.5 37.6 -0.3
‘ 5.0 1.587 44.0 268.2 37.8 37.6 0.4 —
- 115.0 0.20 2.0 190.2 108.2 350.6 82.5 80.3 2.7
5.0 23.76 108.2 352.4 82.6 80.3 2.8

10




5.08 Air 179.5 20.0 5.0 0.281 166.9 111.3 66.8 73.7 -10.3
10.0 0.068 166.9 136.1 75.0 73.7 1.7
89.7 20.0 2.0 0.555 86.5 106.0 47.6 51.2 -7.4
5.0 0.069 86.5 135.9 52.9 51.2° 3.2
89.7 2.8 2.0 3.996 86.4 154.7 55.4 58.9 -6.2
5.0 0.499 86.4 171.0 57.4 58.9 -2.6
179.5 2.3 5.0 2.478 166.4 178.2 82.8 89.9 -8.1
10.0 0.600 166.4 226.7 86.1 89.9 -4,1
179.5 0.8 5.0 7.18 166.1 229.5 96.4 108.2 -12.2
10.0 1.74 166.1 239.4 98.1 108.2 -10.3
89.7 0.625 2.0 18.09 86.3 250.6 64.2 67-.2 -4,6
5.0 2.26 86.3 261.3 64.9 67.2 -3.5
50.0 0.4 2.0 18.39 48,7 358.9 43.2 43.2 -0.1
5.0 2.29 48.7 401.5 43.4 43,2 0.3
2.54 Alr 50.0 70.0 2.0 0.098 35.9 97.6 32.5 35.9 -10.3
5.0 0.012 35.9 139.3 36.0 35.9 0.5
115.0 40.0 2.0 0.920 108.6 94.0 50.4 52.4 -3.8
5.0 0.115 108.6 109.0 54.4 52.4 3.8
103.0 20.0 2.0 1.480 97.9 103.6 50.3 50.7 -0.8
5.0 0.185 97.9 117.2 53.3 50.7 4.9
50.0 20.0 2.0 0.344 48.7 110.9 33.9 37.0 -9.2
5.0 0.043 48.7 146.8 36.6 37.0 -1.0
45.1 20.0 2.0 0.282 44,0 112.6 31.7 34.1 0.3
5.0 0.035 44.0 153.1 34.2 34.1 7.5
37.4 20.0 2.0 0.193 36.7 116.8 27.9 29.3 -4.8
5.0 0.024 36. 167.3 30.1 29.3 2.8
76.0 10.0 2.0 1.600 73.2 117.1 45,0 43.7 3.0
5.0 0.200 73.2 133.8 47.3 43.7 7.7
65.4 10.0 2.0 1.186 63.3 118.1 41.2 39.9 3.2
5.0 0.148 63.3 139.0 43.5 39.9 8.3
115.0 5.0 2.0 7.429 108.2 131.2 59.4 58.2 2.0
5.0 0.928 108.2 137.1 60.5 58.2 3.8
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