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Apparent Conductivity of Glass

D Microspheres from Atmospheric Pressure

VGCU um

M. M. YOVANOVICH

ABSTRACT

An analytical study is presented for predicting
the apparent thermal conductivity of beds of uni-
form diameter glass microspheres. The mathematical
model is based upon thermal constriction resistance
within the spheres and conduction resistance of an
effective gas gap thickness. Both decoupled and
coupled models are considered, and the latter is
shown to be superior to the former. The theory is
valid for gas pressures ranging from vacuum con-
ditions to atmospheric. There is good to excellent
agreement between the coupled model and available
experimental data.

NOMENCLATURE
a radius of circular contact, m
a* dimensionless contact radius (2a/D)
D diameter of spheres, m
E modulus of elasticity of spheres, N/m2
F contact force, N
k, apparent thermal conductivity of microspheres,
W/a K
kg apparent thermal conductivity of gas (air),
W/m K ’
kk' apparent thermal conductivity of gas at
atmospheric pressure, W/m K
k. bulk thermal conductivity of glass spheres,
W/m K
k: dimensionless apparent conductivity (ka/k’)
:v dimensionless apparent conductivity at
. vacuum conditions
k: | dimensionless fluid conductivity (k /k,)
L dimensionless parameter (D/2a)
P gas pressure, mm Hg
P§ reduced gas pressure (Pg/760)
Q heat flow rate, W
QC heat flow rate via the contact area, W
QB heat flow rate via the gas, W
R thermal resistance, K/W
R thermal constriction resistance, K/W

-

Rg gas resistance, K/W

Rr radiation resistance, K/W

T temperature, K

Tc contact area temperature, K

™ reduced absolute gas temperature (T/288)
dimensionless radial position (r/a)

A mean free path of air at atmospheric
pressure, m

A" dimensionless mean free path (A/D)

a accommodation coefficient parameter,
a-a 2-a
— - —3

1 2

§ equivalent air gap thickness, m

6* dimensionless air gap thickness (§/D)

6: equivalent dimensionless air gap thickness
(6o/D)

6:1 equivalent dimensionless air gap thickness
for close packed spheres

6:2 equivalent dimensionless air gap thickness
for loose packed spheres

¥ thermal constriction factor

v Poisson's ratio

[4 lower limit of integration

[ porosity of the system

01 dimensionless parameter defined by Eq. (8)

e, dimensionless parameter defined by Eq. (18)

INTRODUCTION

Since the turn of this century scientists and
engineers have been interested in heat transfer
through porous substances [1]. In general these
porous substances have consisted of solid particles
of various shapes and sizes in physical contact with
each other, and voids of even more complicated shape.
The two methods of predicting the apparent conduct-
ivity of these complex heterogeneous substances are
1) the method of generalized thermal conductivities
and 2) the method based upon the geometry of a
typical element. In the method of generalized con-
ductivities it is postulated that the effective



thermal conductivity depends upon a) the thermal
conductivities of the solid and fluid in the voids,
b) the volume concentrations of the solid and
fluid, and c) the distribution of the two phases
within the porous substance. In the second method
one assumes 8 typical particle shape and size, a
typical packing and calculates the heat transfer
through such an element. The first method has
been used with some success to predict the effective
or apparent thermal conductivity of very porous
substances consisting of complex shaped solid
particles and a fluid whose thermal conductivity is
not greatly different from the solid. It cannot be
used to predict the conductivity of closely packed
substances vhen the thermsl conductivities of the
solid and fluid are quite different. The second
method has been employed in receat studies to pre~
dict with considerable success the apparent con-
ductivity of porous substances whose particles have
well-defined geometries.

This study will be based upon the second method
and will consider the effect of air pressure upon
the apparent conductivity of glass microspheres.

The analysis will be based upon the simplest cubic.
packing, and will consider uncoupled and coupled
heat flows through the solid and gas phases.

Related Studies

Heat transfer through composite materials such
as powders, sand, rocks, ceramics, shot and more
recently glass besads has been under experimental
and analytical investigation during the past two
decades [2-11, 15). Argo and Smith [2] conducted an
experimental and analytical study to determine the
effect of gas flow rates upon the apparent con-
ductivity of spherical and cylindrical beds. Yagi
and Kunii [3] studied the effect of a motionless
fluid upon the apparent conductivity of beds with
various kinds of packing: iron spheres, porcelain
packings, cement clinker, insulating brick, and
Raschig rings. Kunii and Smith [4) derived equations
for predicting the apparent conductivity of beds of
unconsolidated particles containing stagnant fluid.
They modelled the particles as identical sized
spheres making point contact; i.e., they assumed
that all the heat was transferred between adjacent
spheres by means of the fluid and radiation across
the fluid gap. Their theory appeared to agree well
only with test data obtained with solids and satur-
ating fluids having similar conductivities, but the
theory fails to predict the apparent conductivity
at gas pressures below one atmosphere and under
vacuum conditions. Woodside and Messmer (5] con-
ducted a rather extensive experimental study to
ascertain the apparent conductivity of several un-
consolidated samples: three quartz sand packings,
a glass bead packing, and a lead shot packing. They
also investigated the effect of saturating fluid
conductivity as well as the pressure of the satur-
ating gas. They used the theoretical results of
Yagi and Kunii [3), and Runii and Smith [4] with
some modifications to predict the apparent con~
ductivity of unconsolidated packings when the gas
pressure is one atmosphere. They made no attempt
to correlate the spparent conductivity at low gas
pressures for consolidated packings. Chen and
Churchill [6] examined the effect of high temperature
(>800 F) radiation heat transfer through beds of
glass, aluminum oxide, steel and silicon carbide
spheres, cylinders and irregular grains. They

concluded that radiation effects are only important
for temperatures above 1600 F. Dumez [7, 8] deter-
mined the apparent conductivity of glass microspheres
over s wide range of temperatures and gas pressures.
He showed that radiation heat transfer is negligible
for sphere diameters of 400 u even when the temper-
ature of the sphereas approaches 400 C. Dume:
attempted to correlate the test data against the
theoretical results of XKunii and Smith [4]. He
found reasonable agreement only at atmospheric
pressure. He was unable to correlate the data for
low gas pressures, especislly at vacuum conditions,
because Kunil and Smith based their theory on point
contact between spheres. Luikov et al [9] eaxamined,
both empirically and analytically, the apparent
thermal conductivity of powdered and solid porous
materials over a wide range of temperatures, pressures,
and types of saturating fluids. They compared their
test results with theories proposed by othar inves-
tigators as well as their own theory which included
the effect of contacts. This theory is much too
complicated because it attempts to include the
effect of surface roughness, the effect of oxides,
various packing models as well as the effect of gas
pressure. They made no attempt to correlate their
test data and their theory over the entire range of
gas pressure. They showed excellent agreement with
some substances, moderate agreement with others,

and some very poor agreement (errors > 170Z) with
steel balls in hydrogen. Wakao et al [10] determined
the view factor between contacting hemispheres which
can be used to predict the effect of radiation heat
transfer when it is important. Masamune and Saith
[11] obtained apparent conductivities of beds of
spherical glass beads having uniform diameters
ranging from 29 to 470 microns. Data were obtained
at numerous air pressure levels ranging from 10~

to 760 mm Hg. All tests were conducted at an average
bed temperature of 315 K. Their analysis wvas
essentially an extension of the Kunii and Smith
model [4) with an attempt to include empirically the
effect of contacts. )

ANALYSIS

The analyses, both decoupled and coupled, will
be based upon the geometry of Fig. 1 which shows two
spherical particles in elastic contact with each
other. It is assumed that the particles are sur-
rounded by a motionless fluid. Heat transfer can
occur between the isothermal planes T and T3 by
the following mechanisms: a) heat conduction
through the solid phase, b) heat conduction through
the contact area, c) heat conduction through the
fluid, and d) radiative heat transfer between the
surfaces. Mechanisms b), c¢) and d) are thermally
connected in parallel and these are thermally
connected in series with mechsnism a) which is
negligibly small [16, 17].

The following assumptions are made: 1) the
glass spheres are identical in size, 2) the spheres
are smooth and clean, 3) the contact area is circular
having a radius small relative to the sphere diameter,
4) elasticity theory can be used to predict the
contact radius as a function of sphere diameter, load,
elastic modulus and Poisson's ratio, 5) the simplest
cubic packing model will be assumed, and 6) the
typical element can be modelled as shown in Fig. 1,

7) radiation is neglected because the theory will be
compared with test data obtained for microspheres at
temperatures below 500 C, and 8) the total heat flow
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Fig. 1 Schematic of typical element

rate Qr can be separated into two streams: Qe
crossing via the contact and Q, crossing via the
gas gap. For most porous nubs%ances Q. 1s equal to
or greater than Q,, and the two streams can be
separated within %he s0lid phase as shown in Fig. 2.

Elastic Contact

dividing
flow line

Q¢ Q

Fig. 2 Solid and gas heat flow streams

The elastic contact between identical spheres
is given by [13]

2, 1/3
%—--—-144[—1———1 @)

vhere a is the contact radius, D is the sphere
diameter, F is the contact force normal to the
contact plane, v is Poisson's ratio and E is the
modulus of elasticity.

The air gap thickness § at any point outside
the contact can be evaluated by means of

2
26 2 -11 x 1 /2
LD-{;lin ;-1}(1-—-2—)4-;3:-1 (2)

vhich is based upon elasticity theory, or by means
of a simpler geometric expression:

L%-viz-l-/{z-xz (3

where x = r/a 1s the dimensionless radial position
relative to the contact radius. The geometric
expression will be used in this analysis because it
is amenable to integration, and it has been shown
[12] that there is little difference in the final
result between the use of Eq. (2) or (3).

Constriction Resistance

if we assumed that Q./Qg > 1, then the dividing
flow line will be near the surface of the spherical
particles and the resistance to heat flow within
the solid phase is essentially the constriction re-
sistance of a small circular contact area attached
to a relatively large sphere. The total constriction
resistance including both sides of a contact can be
written as

v
c " 2ak )
s

where a is the contact radius, k_ is the solid con-
ductivity and ¥ is the thermal constriction factor.

The constriction factor is complex depending
upon the geometry of the contact area, the geometry
of the particle, and the boundary conditions. If
the contact radius is very small relative to the
diameter of the spherical particle, then the depend-
ence of ¢ upon the particle geometry becomes less
important, and ¥ is essentially a function. of the
boundary conditions alone. For constant temperature
¢ = 1 and for constant heat flux ¢ = 1,08.. Whenever
the relative size of the contact area becomes large
(2a/p = 0.10), or the ratio Q. /Q, approaches unity,
then ¢y = 1 or 1.08 will not be correct. As an
approximation we will use [15]

4 ,2a
w-l—;(s—) (5)

as the constriction factor for 2a/D large and
Qc/Qg near unity.

Equations (1), (3), (4) and (5) will be used in
the decoupled and coupled models to follow.

Decoupled Model. This model will be based upon
the following assumptions: 1) Q. and Q, are inde-
pendent of each other, 2) the boundary of the gas
region, except very near the contact, is essentially
isothermal, 3) the heat flow lines within the gas
region are all parallel being perpendicular to the
contact plane, 4) the thermal conductivity of the
gas 1s uniform, and 5) the thermal resistance of an
elemental volume of the gas, Fig. 3a, is given by

§
ng - I;—E;;E; (6)

where k, i1s the thermal conductivity of the gas under
continuum conditions. The total conduction resist-
ance, R_, of the gas, after substitution of Eq. (3),
is thergfore

L

1 b xdx
2 = Dk X~ 6
R g 2L j’

g A1 A2 52

-

The lower 1limit of Eq. (7) cannot be unity because
the integral is singular at this value of £, and also
physically one cannot include the gas region adjacent
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Fig. 3 Elemental volume for gas resistance

a) Decoupled

to the contact in evaluating Eq. (7) because here
the Knudsen number approaches a very large value,
indicating that the gas no longer behaves like a
continuum. A lower limit different from unity must
be used. Hence, for £ = 8 > 1, Eq. (7) becomes

-%{Az-lln('£2‘1 )
Al -1 - A2 - g2

- A7 6%

The right~hand side of Eq. (8) will be defined as
¢1(L,E) which is a dimensionless parameter depending
upon the dimensionless contact and the lower limit
8. It has been shown empirically {12, 13] that for
L small, 8 * 2.2 adequately correlates the resist-
ance for two different sized sphere experiments.

- -
Dk R
8 8 1

(8)

The total resistance Ry of the typical element
consists of the constriction and gas resistances
thermally connected in parallel, therefore
1 1 1

— R wm— e —

RT Rc R8

)]

neglecting any radistive effects. If we now _con-
sider the typical element of cross-section D4,
length D, and apparent conductivity k,, its thermal
resistance is given by

R (10)

-
T Dk
a
Equating Eqs. (9) and (10), solving for k,, and
dividing by the bulk thermal conductivity of the

spheres yields the following dimensionless ex-
pression:

* 1 1
kg "5k R Ok K a1
s ¢ s g
Upon substitution of Eqs. (4), (5) and (8)
into Eq. (11) we get
* 1 *
k. o + kS 01 12)

where K is the dimensionless apparent conductivity
and k is the dimensionless gas conductivity.

Eq. (52) is valid provided the gas behaves like a
continuum.

b) Coupled

To model the effect of reduced gas pressures,
an effective gas gap thickness is defined as that
volume of gas having a heat flow area (xD2/4)

(1 - 1/L2), an effective thickness §es and whose
total resistance is equal to the gas resistance
given by Eq. (8). This leads directly to an ex-
pression for the dimensionless effective gas thick-
ness:

*
6e - ‘1/4)/01 (13)

where 6: = §,/D. It should be noted that 6: is in-
dependent of the thermal conductivities of the solid
and gas, but does depend upon the relative contact
size. The effect of gas pressures below one atmo~
sphere will be taken into account by utilizing an
effective gas thermal conductivity at any pressure
P, and any temperature T which is related to the gas
conductivity under atmospheric conditions in the
following manner [14]:

k Pl i
T - {1+ 1670 5! (14)
g= 6& PS

where o is the accomodation pargmeter given by

a= (2=-ay)/a, +(2~a )hz, A = A/D is the
dimensionless mean free path of the gas, T* = T7/288
is the dimensionless average absolute temperature of
the gas, and P, = P /760 is the dimensionless gas
pressure. Eq. (16)313 strictly valid for a diatomic
gas layer bounded by parallel isothermal walls. It
is assumed that Eq. (14) with Eq. (13) can be used
to predict with reasonable accuracy the low gas
pressure effects within the gas region shown in

Fig. 3a.

For accomodation coefficients equal to unity,
Eq. (12), with Eq. (14), becomes

(n/4) x*
* - -1__ oo
k, v + s)

* * %, %
Ge + 3.36 AT /Ps

This model will be based upon

Coupled Model.
1) Q. is the primary

the following assumptions:
heat flow and is independent of Q_,, 2) Q, is the

secondary heat flow and is dependgnt upog the temper-
ature field set up by Q., 3) the temperature distri-
bution over the boundary of the gas region can be

determined by considering Q. and the constriction re-
sistance between the contact and some arbitrary point



within the sphere, 4) the ratio Q./Q, is at least
equal to unity, but is normally greager than unity,
so that Q. flows through 70 or more of the cross-
section of a sphere, 5) the thermal conductivity of
the gas is uniform, and 6) the heat flow rate
through an elemental volume of the gas, Fig. 3b, is
given by the Fourier equation

k_ AT(r) 2wrdr
-
dQ. 73 (16)

Yovanovich [16, 17] has shown that the local temper-
ature drop can be related to the heat flow rate
through the contact, the contact radius and the
thermal conductivity of the solid in the following
manner:

8T(r) = (Q_/mak,) tan 1 /(f)2 -1 an

In the coupled model it will be assumed that
Eq. (17) is a good approximation of the local temper-
ature drop across the elemental volume of gas.

Upon substitution of Eqs. (3) and (17) into
Eq. (16) and integrating over the effective gas
region, one gets the following dimensionless ex-
pression:

L — .
Q K xeant AT -1 dx
(Q)(k)-; = > (18)
C g JE -] - -

The lower 1limit in the integral cannot be unity.

It has been shown [12, 13] that a lower limit of
about 2.2 adequately describes the heat flow through
the gas, and this value will be used in this analysis.

The total heat flow rate Q. between adjacent
spheres is the sum of the flows through the contact
and the gas, therefore

*
Qp=Qq. + Qs = Qc{l + kg ¢, (L,8)} (19)

where 02 is the integral of Eq. (18).

The total resistance is by definition the
effective total temperature drop divided by the
total heat flow rate. The effective total tempera-
ture drop is assumed to be the temperature drop
associated with Q and R_ without gas present.
Therefore ¢ ¢

R
RT *
ZkSl[l + kg 02]
The total resistance is also given by Eq. (10).

Therefore equating Eqs. (10) and (20), solving for
ka and normalizing leads to

(20)

* *
ky = {1+ k0,114 1)
as the expression for the dimensionless apparent
conductivity.

In order to utilize Eq. (21) at reduced gas
pressures, an effective gas gap thickness is re-
quired. Persuing the logic presented under the de-
coupled model, it can be shown that for the coupled
model the dimensionless effective gas gap thickness
can be determined by means of

6* - -(“—/%Lﬂ (22)

€ 2

Using Eq. (14) for the effective gas conductivity at
reduced gas pressures, Eq. (21), upon substitution
of a = 2 for accomodation coefficients of unity,

becomes
*

k ¢
k=1 —E 2y

1+ 3.36 AL

§ P
e g

(23)

DISCUSSION AND COMPARISON OF MODELS

Before comparing the results of the decoupled
and coupled models with available test data the two
models will be examined. It can be seen that both
apparent conductivity expressions: Eq. (15), for
the decoupled model, and Eq. (23), for the coupled
model, yield the same value k; = 1/L¥ under vacuum
conditions. If the contact force F were knowm,

Eq. (1) would give L, Eq. (5) would be used to
evaluate ¢ and the reciprocal of the product of L
and ¢ would yield the contribution to the apparent
conductivity due to the contacts., The effective
dimensionless gas gap thickness 6 can be determined
by means of Eq. (13) and Eq. (22)*for the decoupled
and coupled models, respectively, after having
determined ¢, and &,. Finally, either Eq. (@5), for
the decouple& model, or Eq. (23), for the coupled
model, can be used to determine the apparent con-
ductivity at gas pressures from vacuum conditions to
one atmosphere.

Since the contact force is not known for a
particular system, the vacuum test conditions will
be used to evaluate the parameter L. Both models
under vacuum conditions lead to the same relationship
*
between L and k,, namely,
*

X
— (24)

*
where k v is the dimensionless apparent conductivity
obtainedVfrom vacuum tests.

The validity of the two models will be compared
with the test data of Dumez [8], and Masamune and
Smith [11]. Dumez obtained apparemnt conductivity
data for clean glass microspheres vhose diameters
ranged from 300 to 500 u. The apparent density and
porosity were reported to be 1.78 kg/litre and 33Z,
respectively. The tests were conducted in a cylin-
drical system filled with clean dry air whose
pressure ranged from one atmosphere down to 0.01
mm Hg. Tests were conducted at several temperatures
ranging from 273 K to 623 K. The theory presented
in this paper will be compared with the 373 K and
473 K data. At these temperatures Dumez [8] reported
the bulk conductivity to be 0.74 and 0.786 W/m K,
respectively. The measured dimensionless apparent
conductivity values are shown in Tables 5 and 6 below,
for the Dumez [8] tests. For comparative purposes it
will be assumed that the diameter of the microspheres
[8) was 400 microns. Since Dumez reported bulk
thermal conductivity values for the glass beads,
these values were also used to normalize the second
set of test data [11].



For convenience only, the two models, Eq. (15)
and Eq. (23) have been rewritten in the following
forma: .

Decoupled Model

W +——-r-!1 (25)
a av 22
e P
8
Coupled Model
* * [1 . x3 @
"] i o ®
1+
§ P
e B

vhere P_ is the gas pressure in mm Hg. The para-
neters » K3, K3 and K; have been evaluated for
air and glass beads at the test conditions reported
[8, 11]). These parameters are presented for both
sets of data in Tables 1, 2, 3 and 4. The effective
dimensionless gas gap thickness is also presented
in Tables 1, 2, 3 and 4 for both sets of data.
Tables 1 and 2 correspond to the decoupled model,
while Tables 3 and 4 correspond to the coupled
model. It should be noted that both models yield
similar znluea of 6: for the two sets of data,
nanely 5, = 0.130 for the decoupled model and

& = 0.150 for the coupled model. Tables 5 and 6
contain the data of Dumez [8], the predicted values
of Eq. (25) and Eq. (26), as well as the ratios of
the measured k, to the predicted values of K*.
Tables 7, 8, 9 and 10 contain the variable sphere
diameter data [11], the predicted values of Eq. (25)
and Eq. (26), as well as the ratios of the measured
kq to the predicted values of kj.

The agreement between the available test data
[8, 11] and the two models, Eq. (25) and (26), can
be seen in the last two columns. It is clear that
the coupled model is superior to the decoupled
model at gas pressures in excess of 5 mm Hg for
both sets of data. The agreement between Eq. (26)
vhich is based upon Eq. (23), the coupled model,
"and the Dumez data [8) is excellent at low gas

Table 1 Parameters for decoupled model,
Eq. (25), and Ref. [8].

T(°K) 373 473
K 0.0716 0.0730
av
5: 0.128 0.130
K 0.0331 0.0366
K, 0.526 0.688

Table 2 Parameters for decoupled model,
Eq. (25), and Ref. [11].

D(w) 29 80 200 470
*
k., 0.0714 © 0.0714 0.0714 0.0714
s: 0.130 0.130 0.130 0.130
K, 0.0280 0.0280 0.0280 0.0280
K, 6.31 2.29 0.915 0.390

pressures (< 0.1 mm Hg) and reasonably good at high
gas pressures (> 300 mm Hg). The agresment between
Eq. (26) and the other test data [11] is excellent
for all sphere diameters at low gas pressures

(< 0.5 mm Hg) and high gas pressures (> 500 mm Hg).
The largest difference (about 10Z) between theory
and test data [11] occurs at different gas pressures
depending upon the sphere dismeter: 100 mm Hg for
D=29 y, 50 mm Hg for D = 80 u, 10 ma Hg for
D=200y and 5 mm Hg for D = 470 u. The largest
difference (about 21X) between Eq. (26) and test [8)
occurs at a gas pressurg of 6 ma Hg, consistent
with that observed with the other test data [11].

Comparison with Kunii and Smith model |A|

This analysis based upon constriction resist-
ance due to heat flowing through the contact area
will be compared with the model of Kunii and Smith.
In their model it was assumed that only point
contact exists between spheres with all the heat
crossing the contact plane by conduction through the
gas only. They also assumed that there was no bend-
ing of heat flow lines within the solid and gas
phases. They modelled their typical element as two
cylindrical solids of flow area aDZIA, and thickness
2D/3, separated by an effective gas gap thickness
which can be calculated by means of the following
expression:

-

*2 2
. 0.50 (1 - k)° sin‘s_
*

e - A5 -1) cose 1 @ - k) - coss )

k k ° 8 °

8 8

2 . * :
'3"3‘ , 27)

vhere the parameter 6_ depends upon the packing;
for close packing (¢ = 0.260), 6 = 22.3° and for
loose packing (¢ = 0.476), 6_ = $5.99., For an
intermediate packing (0.260 < ¢ < 0.476), they
recommend a linear interpolation to determine the
effective dimensionless gas gap thickness:

* R * % é - 0,260
6e 6¢1 + (6e2 6el)[ 0.216 ] (28)
}
Table 3 Parameters for coupled model,
Eq. (26), and Ref. [8].
1(°K) 373 473
*
k.v 0.0716 0.0730
a: 0.150 0.152
K3 3.08 3.31
K, 0.542 0.688
Table 4 Parameters for coupled model,
Eq. (26), and Ref. [11].

D(w) 29 80 200 470
kav 0.0714 0.0714 0.0714 0.0714
6: 0.151 0.151 0,151 0.151
K3 2.60 2,60 2.60 2.60
Ka 6.31 2.29 0.915 0.390
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Kls) Kj18]

-« -«

- el kit 251k (E. (26)] u:u:- a1 ik, (26)]
760 ' 0.298 0.319 0.291 0.924 1.010
0 . 0.7 0.317 0.290 0.876 0. 960
0 L. o2 0.291 0.268 0.779 0.847

6 5 0.162 0.222 0.209 0.731 0.778%

0.6 ( 0.0872 0.106 0.103 0.836 0.847
0.0 - 0.07% 0.0777 0.0773 0.968 0.968
0.00 .  0.0716 0.0722 0.0722 0.991 0.992

Table 5 Comparison of models and test data [8] at 373 X

" -« -
= . « « k (8} x [8)
- e MalEe @) kI8 GO) n:n::. as nfn:. ae)
760 T 0.340 0.33% 0.313 0.958 1.086
0 " 0.3% 0.352 0.311 0.937 1.061
0 % o0.266 0.314 0.283 0.847 0.940
¢ 7 o.68 0.223 0.211 0.752 0.7%
0.6 Y 0.102 0.101 0.919 0.926
0.1 0.0780 0.0782 0.0782 0.997 0.997
0.0 .  0.0730 0.0735 0.0735 0.993 0.993

Table 6 Comparison of models and test data [8] at 473 K

L] L]
- yi Vi G9) Kk 0] -3 i wAs
k(B (2] klm. @0)]
760 0.248 0.1 0.247 0.913 1.004
00 0.23¢ 0.2¢3 0.243 0.8% 0.971
100 0.188 0.213 0.202 0.873 0.931
%0 0.182 0.101 0.172 0.093 0.942
10 0.1087 o.108 o.1072 0.9¢ o.m
3 0.0036 0.0913 0.0912 0.93% 0.93
0.3 0.0714 0.073 0.073 0.970 0.970
0.1 0.0714 ' 0.0718 0.0 0.9% 0.9%
0.03 0.0714 0.0716 0.0718 0.997 1.000
e.0 0.071¢ 06.0716 0.0719 1.000 1.000

Table 7 Comparison of models and test data [11] at D = 29y

. L
_"'.' i) Nik. (29 i G0) - il = i
bjita. (23)] klm. (20))

10 0.233 0.219 0.253 0.9 1.008
300 0.240 0276 0.2m2 0.903 0.9%
100 0.216 0.252 0.229 0.082 o927
% 0.19 0.231 0.214 0.033 0.902
w 0.13 0.149 0.163 0.09 an?
s 0.112 0.119 0.117 0.1 0.937
o3 o.M 0.0773 0.0773 0.933 0.933
0.1 0.0714 0.0726 0.0726 0.983 0.98)
0.03 0.0714 0.0720 0.074 0.992 1.000
[ N § 0.0714 0.0714 0.0714 1,000 1.000

Table 8 Comparison of models and test data [11] at D = 80y

L L
_".. Cyety) Nk 9] Mim. @20] - Ll - i
k (B, 25)] & [2a. 2611

7% 0.257 0.202 0.23 0.912 1.004
300 0.223 0.201 0.233 0.%07 1.000
100 0.23 o270 0.2 e.on 0.9%
") 0.219 0.260 .23 0.842 0.92¢
10 0.184 0.197 0.107 0.843 0.888
s 0.180 0161 0.133 0.070 0303
0.5 0.0%04 0.0037 0.0803% 1038 1.087
0.1 0.0703 0,078 0,078 1.038 1.093
0.03 0.073 0.0129 0.0729 1. 1.0
s.01 0.0n4¢ 0.0n7 o.on7 0.1 0.9%

Table 9 Comparison of models and test data [11] at D = 200u



_:'“' ity K[k (25))
760 0.257 0.283
500 0.257 0.282
100 0.252 0.277
50 0.240 0.275
10 0.197 0.235

5 0.17% 0.206

0.5 0.107 0.102
0.1 0.0856 0.0784
0.08 0.0808 0.0749
0.01 0.0737 0.0721

L ]
n[u.(zn)

- -
k1) k111

g .
k‘liq. (25)] k.’[t!'q. (26))

0.256 0.908 +A-003
0.256 0.911 - 1.004
0.252 0.910 " 1.000
0.248 0.873 20.968
0.219 0.838 -,8.900
0.186 0.845 +0.897
0.102 1,049 1.049
0.0783 1.092 1.093
0.0749 1.079 21.079

0.0722 1,022 =1.022

Table 10 Comparison of models and test data [11] at D =2470u.

Otherwise they recommend that one put

*ast f 260

e ™ el or ¢ < 0.26

and (29)
* *

s, =8, for ¢20.476

' *
vhere 6: corresponds to close packed beds and Gez
corresponds to loose packed beds.

For negligible radiation effects their model
leads to the following expression for the dimension-
less apparent conductivity:

* & *® 2 %
kafkg = ¢ + (1 = )/ + 5 k) (30)

It will be noted that the Kunii-Smith model depends
upon the solid/gas conductivities and the packing
arrangement, but is independent of sphere size and
any loading parameter. This model cannot be used to
predict low gas pressure effects nor apparent con-
ductivities under vacuum conditions.

The comparison between test data [8, 11) and
the Kunii-Smith model [4) is summarized in Table 11.
The comparison can only be made at atmospheric
conditions because Kunii and Smith did not take into
account the effect of contact areas. It can be seen
in Table 11 that there is good agreement between
theory and test [8] at 373 K and moderate agreement
at 573 K when the porosity 1is 0.33. The 202
difference between theory and test data [11] is also
observed when the porosity is 0.38 and the tempera~
ture is 315 K for all sphere diameters.

The coupled model proposed in this study based

upon the simple cubic packing is superior to the Kunii

and Smith model for the glass bead/air system at
atmospheric pressure, and for reduced air pressures
as well.

CONCLUDING REMARKS

A method has been proposed to predict the
apparent conductivity of glass microspheres in terms
of the system physical and thermal properties, the
system geometry as well as the system temperature and

pressure. It has been demonstrated that both the
decoupled and coupled models agree quite well with
available test data at low and high air pressures,
and reasonably well at moderate gas pressures. It
vas shown that test data under vacuum conditions

Table 11 Comparison of Kunii-Smith model [4]
with test data [8, 11]

T(°K) 373: (8] 573 [8] 315 {11]

¢ 0.33 0.33 0.38
5: 0.0742 0.0775 0.0911
Ky 0.283 0.322 0.213
k3(8) 0.295 0.391 —
k3(11] — —_— 0.255
k:(test) )

2 1.042 1.214 1.197
k (k-s)

a

can be used to determine the effective loading
between the contacting spheres, as well as the con-
tribution of the contsct areas to the apparent con-
ductivity of the system over the entire pressure
range. For the glass beads/air system the model
proposed here is superior to the Kunii-Smith model.
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