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Abstract

This paper presents an analytical work performed to determine
the thermal resistance to heat transfer at the interface formed
by the contact of a hard smooth flat surface with a softer turn-
ed surface. The results are valid for surfaces in a vacuum en-
vironment when there is negligible radiation heat transfer
across the gaps. The thermal analysis was based upon steady
heat flow in a two-dimensional heat channel and the contact
analysis was based upon plastic deformation of a ridge formed
by the turning process. A dimensionless group consisting of
contact conductance, harmonic mean thermal conductivity of the
contacting surfaces and the distance between adjacent contact-
ing ridges correlates the available data if surface roughness
is also taken into account.

Nomenclature
a = half-width of contact strips
Aa = apparent contact area
b = half-width of heat channel
o = coefficient in Eq. (35)
dj = average diameter of innermost heat channel
D = diameter of contacting cylinders
h, = contact conductance
her = contact conductance due to comtact spots
hey = contact conductance due to contact strips
Jo = Bessel function '
k = thermal conductivity
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harmonic mean thermal conductivity
kp = 2kqkp/ (kg + k2)

length of heat chamnel

number of heat channels

apparent contact pressure

maximum yield pressure

g

dimensionless contact pressure

heat flow rate

constriction resistance

temperature

average contact temperature, Eq. 13)
contact strip temperature
transformation, Eq. (42)

Cartesian coordinates

contact angle

dimensionless area ratio, Eq. (36)
distance between spirals
transformation, Eq. (42)
root-mean-square of surface roughness
elliptic coordinates

geometric factor, Eq. (23)
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Subscripts

1,2 = golids 1 and 2, respectiiely
i = jith heat channel

Introduction

The thermal resistance to steady heat flow across interfaces
formed by contacting solids is currently of great interest to
aerospace engineers, especially when the interfaces are placed
in a vacuum environment. Many investigators have studied (an-
alytically and experimentally) various aspects of this rather
complex problem. The complexity is due to the fact that there
are essentially two related problems which have to be studied:
the thermal and the mechanical. The thermal problem is solved
when one is able to predict the interface resistance from a
knowledge of certain physical (thermal conductivities of the
contacting solids and interstitial substance) and geometric
(number, shape, size and placement of the contact spots) char-
acteristics. The mechanical problem is solved when one is
capable of predicting the required geometric characteristics
from a knowledge of the geometry (surface roughness and wavi-
ness) of the contacting surfaces and certain physical char-
acteristics (modulus of elasticity, maximum yield pressure and
apparent contact pressure).
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Several important problems dealing with nominally flat rough
surfaces and smooth wavy surfaces have been extensively studied
and the solutions can be found in the open literature.l-6
Some aspects of these results will be applied in this study
which will consider the heat transfer across an interface form-
ed when a hard smooth flat surface contacts a softer turned
surface. Certain investigators3’7’ll have presented theoret-
ical works dealing with an ideal two-dimensional heat channel,
but, to-date, no one has examined the complete thermal-mechan-
ical problem. This paper will be limited to the study of ther-
mal contact conductance in a vacuum only, since it serves as a
logical starting point for the more difficult analysis required
to handle interstitial substances such as fluids.

Statement of the problem

A solid metallic cylinder whose surface has first been made
flat and then turned on a lathe is brought into contact with a
second metallic cylinder of different material whose surface is
smooth and flat. A contact area (consisting of individual con-
tact spots) ressembling a long spiral of effective width 2a
(Fig.1l) is formed as a result of the plastic deformation of the
ridge formed during the turning process (Fig. 2).It is the soft-
er turned surface which undergoes the plastic deformation. The
distance between adjacent ridges (or spirals) § will depend
upon the turning rate and the rate of tool advance. This di-
mension will be much larger than tHe effective width of the
spiral which actually consists of differently shaped contact
spots. Some of the spots are relatively far apart while others
are very close to each other. Those close together will merge
to form larger ones as the contact load is increased. In fact
at very high loads, the majority of the contact spots will have
merged to form a quasi-continuous strip of width 2a.

When the interface described above is placed in a vacuum and
steady linear heat flow occurs in both cylinders, a pseudo-tem-

Fig. 1 Contact areas for turned surfaces.
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Fig. 2 Profiles of contacting surfaces.

perature drop appears at the interface (Fig. 3 ). This tempera-
ture drop is a direct measure of the thermal resistance occur-
ring at the impertect interface. The objective, then, is to
predict this thermal resistance or its reciprocal, the thermal
conductance. For interfaces placed in a vacuum and negligible
radiation heat transfer across the gaps, there will be one
thermal path available for heat transfer across the interface
and that is conduction through the contact spots.

The thermal problem will be modeled as N concentric circular
heat channels thermally connected in parallel contacting N
other concentric circular heat channels. The first set of heat
channels are thermally connected in series with the second set
of heat channels. Once the thermal comstriction resistance of
a typical heat channel has been determined, it is relatively
simple to determine the total resistance of the first set of
heat channels and finally the total resistance of the two sets

together.
Analytical solution

Constriction Resistance of a Single Heat Chamnel

Fig. 4 shows the model used in this analysis as well as the
model used by other investigators.3,7 Only one half of a typ-
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Fig. 3 Temperatures in contacting solids.
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Fig. 4 Heat channel models.

ical heal channel is shown because of temperature symmetry about
the oy-axis. The required temperature field must satisfy the

following differential equation in Cartesian coordinates as well
as the boundary conditions:

(azr/axz)_+ %1/3y%) = 0 (1)
T= Tc y=0 0<x<a (2)

3T/%n = cosa(3T/3y) - sina(3T/3x) = 0, 0 <y < (b - a)tana

> a<x<h (3
3T/3x = 0 x =0
0<yc<e= %)
3T/3x = 0 x =D
3T/3y -+ -Q/k2b y +> = (5

Equations (2) and (3) are the mixed boundary conditions
specified over the contact area and the surface outside the
contact area. The uniform temperature is prescribed over the
contact, while a zero heat flux in the normal direction is
prescribed over the remainder of the apparent contact area.
Both Mikic3 and Veziroglu7 analyzed the simple case where the
contact angle is zero (a = 0)., The theory presented in this
paper can treat the more general case of a # 0 and yields an
expression for the constriction resistance for a = 0 which is
superior to those expressions developed by Mikic and Veziroglu.

The thermal problem as stated above can be reformulated in
terms of elliptic-cylinder coordinates (n,y) if one uses the
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following transformation equatioms:
X = a coshn cosy "~y = a sinhn sin ¢ (6)

where a 1s the half-width of the contact area assumed to be a
very long rectangular strip. The parameter n determines the
elliptic isothermal surfaces in the neighborhood of the contact
area, and n = 0 represents the isothermal contact area while

n =n, > 0 represents the elliptic isothermal surface located
far from the contact area, (Fig. 4). The parameter ¥ is an ang-
ular measure determined from ¥ = arc tan (y/x). Employing the
transformations of Eqs. (6), Eq. (1) transforms to

da?r/an? = 0 o))
where the temperature field depends only upon one parameter n.
The original differential equation has been transformed into a
much simpler equation and its solution is

T = Cln + C2 (8)

and the corresponding boundary conditions are
T=T, n=0 (9
> T= Tl <Tc n=n (10)

The mixed boundary conditions which are difficult to satisfy
when Cartesian coordinates are used, are automatically satis-
fied when elliptic-cylinder coordinates are employed.

Upon substitution of Eqs. (9) and (10) into Eq. (8) and after
evaluating the two constants of integration, one obtains the
following expression for the temperature distribution in the
region of interest:

(Tc - T)/('l‘c - Tl) = n/n1 (11)

This is a simple linear temperature distributiom in terms of n,
but a complex two-dimensional field in terms of x and y. Equa-
tion (11) can also be written in closed form as

Tc - T - cosh-1 (x/a cosy)

Tc - Tl c:osh-l (b/a cosy)

where the first expression of Eq. (6) was used to obtain the
relationship between n and y.

(12)
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Equation (12) will now be used to evaluate the average inter-
face temperature which is defined as

a
1 1 b
Ta E-é Tdx + B af Tdx (13)

After substitution of Eq. (12) in Eq. (13) the average inter-
face temperature is found to be

Ta - Tc - ) i cosh-l (x/a cosy)dx (14)
b cosh (b/a cosy) a

or
(T - Tl)a cosy b/a cosy -1
T, =T, - = - / cosh “ udu (15)
b cosh © (b/a cosy) 1l/cosy

where u = x/a cosy. It should be noted that the average inter-
face temperature depends upon the contact area temperature,

the temperature difference between the contact area and an
isothermal surface located at the far boundary of the region of
interest as well as certain geometric characteristics.

The effective temperature difference which is required to
overcome the thermal constriction resistance will be defined as

(’1‘c - Tl)a cosy fb/a cosy

T -7 =

cosh™t wdu  (16)
c a

b cosh-l(b/a cosy) 1l/cosy

The steady heat flow rate through the heat channel can be
evaluated at the contact area
L a 3T
Q=2 [ -k — (x,0) dxdz 17)
o0 %

where £ is the effective length of the heat thannel measured
into the paper. By means of Eq. (6), Eq. (17) can be trans-
formed into an expression dependent upon n and z:

L w/2 5T
Q=2 S -k Er (n = 0) dydz (18)
0 ¢ n

where o is the contact angle, Fig. 4. Eq. (18) can be inte-
grated to yield an expression for the total heat flow rate

2k (n/2 - a)('l'c - Tl)

cosh.l (b/a cosa)
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The thermal constriction resistance of a heat channel is de-
fined as the effective temperature difference divided by the
total heat flow rate. Therefore,

Rc = (Tc - Ta)/Q ) (20)
and after substitution of Eqs. (16) and (19) into (20) ome
obtains

b/a cosa -1
f cosh = u du (21)
1/cosa

R = (a cosa/b)
c kin(l - 2a/w)

where k is the thermal conductivity and the geometric char-
acteristics of the interface are a,b,a, and 2. Equation (21)
can be written as

R, = ¥/ke (22)
where the dimensionless geometric factor ¥ defined as

b/a cosa
p = ;%%—%gggég% ! cosh 1 u du 23)
1/cosa

is seen to depend only upon a and a/b.

Equation (22) is the total thermal ®onstriction resistance
of a typical heat channel. The resistdnce is a functioén of
the thermal conductivity as well as certain geometric char-
acteristics.

Thermal Resistance of Multiple Channels in Parallel

The total thermal resistance of the spiral arrangement showm
in Fig. 1 will now be modelled as a number of concentric cir-
cular heat channels thermally connected in parallel. The con-
striction resistance of the ith chanmel is

Rci = ?i/klzi (24)
where kl is the thermal conductivity of the solid which has
been separated into N heat channels. 2, is the effective
length of the heat channel and ¥; is the corresponding geo-
metric factor. The total resistance for solid 1 is, therefore,

N N
= I 1/R, =k, I &,/¥, (25)
=1 ci 1 i=1 i1

l/thl
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when N heat channels are connected in parallel. If the heat
channels are geometrically similar, the geometric factor ¥
will be the same for each heat channel, and Eq. (25) becomes

N
LR ;= (k/¥)) 2 (26)

tc {=1 i

where ?1 is now the geometric factor corresponding to solid 1
and
N .
I 24
i=1

is the total effective length of the contact.

Effective Length of Contact

In order to evaluate the total resistance given by Eq. (26),
it is necessary to relate the total effective length of the
contact to the apparent contact area and the spacing between
adjacent spirals. Since the contact has been modeled as con-
centric circular heat channels with common spacing §, (Fig. 5)
the effective length of each channel, starting from the center
of the contact area, is

21 = ndl

22 = wdl + 276 27)

zi = ﬁdl + 27(i - 1)¢ |
where d, is the average diameter of the innermost spiral and it
is of the order of §. The total effective length of the con-
tact is the sum of all the heat channel lengths

N (N¥-1)
I 21 =n{Nd +28 I i} (28)
{=1 i=1

The second term within the bracket can be summed and it is
equal to

SN(N - 1) (29)

The total number of heat channels, to a first approximatiomn, is
D/28 where D is the diameter of the apparent contact area.
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Fig. 5 Contact model for conductance theory,

Upon substitution of Eq. (29) in Eq. (28) we obtain as the
total effective length of contact

N DZ WDZ
ifl i = TI’[Ndl - NS + Z-G-] = %5 (30)

where ﬂD2/4 is the apparent contact area.

Thermal Contact Conductance of the Spiral

The total contact resistance, Eq. (26), can now be written as
2
l/Rtcl (kl/wlé)(wD /4) (31)
The definition of contact resistance, R, = ATc/Q, and that of

contact conductance, h, = ATC/(Q/Aa), allows one to equate the
resistance and conductance in the following manner:

h, = 1/(RcAa) (32)

Thus Eq. (32) with Eq. (31) shows that the thermal contact con=-
ductance of N heat channels in solid 1 can be written as

hcl = kI/?lé (33)

A similar expression can be written for the second set of N
heat channels in solid 2.

The over-all contact conductance for two sets of N dissim-
ilar heat channels thermally connected in series is

l/hcw = 1/hcl + 1/hc2 = 6[‘1’1/kl + Wzlkz] (34)
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where ¥; and ¥, are the geometric factors, defined by Eq. (23),
corresponding to solid 1 and solid 2, respectively. The addi-
tional subscript w will be used to denote thermal conductance
due to the spirals under ideal conditioms, i.e., when the

spirals or strips are continuous (all.the contact spots have
merged).

Contact Model

If one 1s to be able to use Eq. (34) to predict the thermal
conductance of an ideal turned surface, it is necessary to have
a relationship between the geometric parameter a/b, the appar-
ent contact pressure and the maximum yield pressure of the
softer turned surface. If one assumes that during the first

- compression cycle the contacting ridges undergo plastic defor-
mation, then one can write the following simple expression
which is a force balance at the interface:

2
ZaLPm = (7D /4)Pa (35)

where 2al is the contact area formed because of plastic defor-
mation of the spirals, P, is the maximum yield pressure and Py
is the apparent contact pressure. This simple model will be a

good approximation of the real situation for the first loading
cycle.

Repliging L, the total effective length of the contact area,
by Eq. (30), one obtains.

a/b = p* (36)

where P* = Py/Py. The effective contact width may be smaller

than that predicted by Eq. (36), and in order to take this into
account, write

a/b = P*/y (37)

where y > 1 depending upon how closely the contact model agrees
with the real situation. Equation (37) can now be substituted
into Eq. (23) to obtain a relationship between conductance,
applied load and material strength.

Over-all Conductance Including Surface Roughness

All surfaces possess surface roughness prior to the turning
rocess. This roughness will not change during the turning
process or will be altered somewhat (increased). The ridges
formed during turning will, therefore, not be perfect and will
not form a continuous line during the initial contact. The
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contact will consist of discrete contact spots formed on a
line corresponding to the lay of the ridges when the load is
very light. The discrete contact spots will be relatively far
apart and, therefore, the total conductance will be influenced
by the surface roughness. The presence of the contact spots
within the spiral contact and their influence on the over-all
conductance can be taken into consideration by superposing
upon Eq. (34) the conductance due to surface roughness. For
light and moderate loads an expression such as the omne develop-
ed by Cooper, Mikic and Yovanovich3 is recommended.

h__ = Cl /o) (@907 | (38)

In Eq. (38), C is a geometric parameter depending upon the
slope of the contacting asperities (surface roughness). Typ-
ical values of Cl2 are 0.036, 0.175 and 0.290 for lapped sur-
faces, average rough and very rough flat surfaces, respective-
ly. The other parameters appearing in Eq. (38) are: o, the
standard deviation of the profile heights of the asperities;
Kns the harmonic mean thermal comnductivity; and P*, the dimen-
sionless contact pressure.

As the contact pressure becomes very large, more contact
spots appear and the characteristic distance between them de-
creases becoming zero for many contact spots. At these very
high loads most of the comtact spots will have merged to form
a quasi-continuous spiral. At these high contact pressures Eq.
(34) should be adequate, but for the lower pressures the over-
all conductance will be more accurately predicted by

1/hc = (l/hcw) + (l/hcr) 39

provided that Eq. (38) cémnpredict the roughness conductance
at moderately high pressures.

Comparison of Theory and Some Experimental Data

The theory presented in this paper will be compared with the
results of the experimental work preformed at the University
of Poitiers, France. _Under the direction of Cordier, Roirom,
Bardon,lo and Fouchéll systematically studied various aspects
of heat transfer across the interface formed by the contact of
a smooth flat surface and a softer turned surface. In their
experimental work conducted under ambient and vacuum condi-
tions, they sought an empirical correlationm for the thermal
contact conductance. The one correlation by Fouchéll develop-
ed for ambient as well as vacuum conditions failed to predict
the thermal conductance with any degree of accuracy. The
vacuum test data of BardonlO will be compared with the present
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theory. In his work Bardon placed stainless steel (18-8) into
contact with an alloy of magnesium~zirconium (0.7% zirconium).
The stainless steel cylinder was prepared in the following
manner: A collar fabricated from identical material was placed
around the cylinder; them both were made as flat as possible by
turning. After turning, the pieces were lapped and finally pol-
ished. After these operations the collar was removed and the
stainless steel surface was observed to be smooth and optically
flat. The softer material was made flat by turning it on a
lathe such that the depth of cut was just sufficient to elimin-
ate all the high spots. During this operation the tool advance
was 0.02 mm. The surface roughness was measured to be about
12 x 10°% inches (rms). After this initial flattening process
the alloy material was again turned on a lathe using a tool
steel cutter having an angle of 60°. The cylinders were turned
“t 250 rpm. The tool advance and depth of cut were: a) 0.5 mm
ad 0.05 mm; b) 0.25 mm and 0.05 mm; and finally ¢) 0.125 mm
and 0.025 mm, respectively, for the three interfaces studied.
The diameter of all these pieces was 25.4 mm.

The thermal tests were conducted in a vacuum system similar
to systems used by other investigatorsz‘4 and the technique
used was the same. The tests were done in a vacuum of 10~% mm
Hg. The system was maintained at a pressure of 10~% mm Hg for
four days prior to the actual testing so that all surfaces were
thoroughly de-gassed. The heat flux based upon the apparent
contact area was about 5000 BTU/hr.sq.ft. The load on the
interface ranged from about 150 to 1500 psi. The pseudotemper-
ature drop across the interface ranged from a low value of
0.59F corresponding to the high loads up to a maximum value of
about 6°F corresponding to the light loads. Temperature read-
ings were taken every 45 minutes and the calculated thermal
conductance ranged from about 800 to 12,000 BTU/hr.sq.ft. ©F.
Fouché conducted hardness tests and found the yield pressure of
magnesium-zirconium to be 44,000 psi.

To facilitate the comparison of this theory with the test
data of Bardon, Eq. (39) has been writtem in the following
dimensionless form:

B /)™ = 77l k) [a@y/RY) - 1]

x [L+(k/k,)/ (1-20/m) ]+¢ L (a/6) /290 %% (40)

or the interfaces investigated by Bardom, Eq. (40) becomes
(sh_/k )™" = 0.68[1n(2v/P%) - 1]

+ (2.78 x 107°/8)(1/p*)0- 985 (41)
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The geometric and physical characteristics of the contacting
surfaces used in the test program are listed in Table 1.

Table 1 Geometric and physical characteristics of the surfaces

Stainless steel Magnesium=-zirconium
k, = 10 BIU/br fr °F k, = 59 BTU/hr £t °F
s %0 o =107° £t
a« &0 a” 2 30°
Pm = 360,000 psi Pm = 44,000 psi
Gl = 1/610 ft
62 = 1/1220 ft
63 = 1/2440 ft

A comparison between experimental results and the predicted
values calculated by means of Eq. (34) with vy = 1 and by means
of Eq. (41) with vy = 1 are presented in (Figs.6-8). Equation
(34) is based upon the assumption that there are no surface
roughness effects, while Eq. (41) takes into comnsideration
roughness effects. The first interface tested §; (Fig.6) had a
total spiral length of about 3.3 ft and could be approximated

'5 T Y LS S | I] Y111
.4} 7 .
]
e / £Q.(41) y=1
< s
o
P .2 - p
10)
© TEST( s—a—38
N . 1 -
o L N S U T S 1 Ll 1 1 ] [ S|
6° p® 10° o’

Fig. 6 Theory vs test data.
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Fig. 7 Theory vs test data,

by 25 heat channels connected in parallel. There is good a-
gieement between Eq. (34) and test data in the load range

P = 1.2 x 102 to 5.2 x 1072, whereas in the load range

P* = 3 x 1073 to 1.2 x 1072 there is good agreement between Eq.
(41) and the data. The second interface tested 62(F13.7) had
a total spiral length of about 6.6 ft and could be approximated
by 50 heat channels in parallel. There is excellent agreement
between Eq. (41) and the data from P* = 3.4 x 1073 up to

P* = 3.5 x 10-2, and then the test data falls on the values
predicted by Eq. (34). The last interface tested &3 (Fig. 8) had
a total spiral length of about 13.2 ft and could be approxima-
ted by 100 heat channels in parallel. For this interface there

’5 n T | B B BN S l T T T
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oL /-
SrEEe) yel 7]
. E '
E 4
:EhZ-_ —
w EQ.(41) y=!
|- S TEST('oo)—o-—o —
O‘ 1 I I S G T | ll 1 | 1 Ll l
103 p* 1072 o™

Fig. 8 Theory vs test data.
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