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In this paper the thermal constriction resistance between
contacting paraboloids is considered, and the results of the
theory are applied to the thermal analysis of a typical bearing
element. In this analysis the complex thermal problem is re-
solved by the use of ellipsoidal coordinates which are intrin-
sic to both the shape of the contact area and the mixed boun-
dary conditions: a) temperature prescribed over the contact
which is isothermal and b) temperature gradient prescribed over
the remainder of the contact plane which is impervious to heat
transfer. An expression is developed for the total constric-
tion resistance of a typical bearing element. The resistance
is shown to be directly proportional to a geometric factor,
which is a function of the ratio of the semimajor to semiminor
axes, and inversely proportional to the product of the thermal
conductivity and the semimajor axis. The theory is compared
with test results, and the agreement is good.

Nomenclature
a = semimajor axis of elliptic contact area
A = constant
b = semiminor axis of elliptic contact area
B = constant
E

= modulus of elasticity
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Subscripts

solids 1 and 2, respectively, in contact

1,2
i,o inner and outer races, respectively

b}

Superscripts

unprimed = minimum radii of curvature
primed = maximum radii of curvature

Introduction

Many modern precision instruments are quite sensitive to tem-
perature levels or temperature changes. When these electro-
mechanical or optical instruments are mounted on gimbaled plat-
forms, the total thermal resistance between the platform and
the available thermal sink becomes very important. In a gim-
baled system the instrument bearing will dominate the transfer
of heat away from the source (the precision instruments).

Since many systems operate in a vacuum, there are essentially
two modes of heat transfer available: conduction through the
solids and the metal-to-metal interfaces, and radiation across
the gaps. For small temperature differences and low operating
temperature levels the second mechanism will be small relative
to the conduction mode.

- A survey of the literature shows that only two studies ?
have dealt with the problem of heat transfer across a bearing.
The first investigationl was experimental and showed the
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magnitude of the thermal resistance of a typical bearing as a
function of the bearing load and the influence of air and a
lubricant upon the resistance. The investigator considered
the case of a dry bearing in a vacuum, a dry bearing in air,
as well as a lubricated bearing in a vacuum. He observed that
a dry bearing in a vacuum offered from 10 to 5 times more re-
sistance than the same dry bearing placed in air or the same
lubricated bearing in a vacuum. The factor of 10 corresponds
to a very light bearing load, while the factor of 5 corres-
ponds to a higher bearing load (approximately 10 times the
light load). In the first case the thermal resistance was
dependent upon the applied load (approximately to the 1/3
power), while for the other two cases, the resistance was
fairly independent of the load. The investigator1 did not
attempt an analysis of the thermal resistance, but did con-
clude that bearings different in size should have similar
resistance if the number of balls is the same.

The second investigation2 was analytical and showed which
parameters were important and the influence of these parameters
on the total resistance of the bearing. The analysis was
based upon a symmetrically load bearing with heat flowing
uniformly through each ball. The races were assumed to be
flat and the contact areas were determined to be circular and
very small relative to the radius of the balls. Assuming a
particular thermal model, the investigator2 showed that the
total thermal resistance for a dry bearing in a vacuum is in-
versely proportional to the product of the number of balls, the
radius of the contact area and the thermal conductivity of the
balls. Since the contact area radius depends upon the ball
radius, the material properties and the applied load, the
effect of these parameters could be ascertained. The analysis
showed that the resistance should vary as the load to the 1/3
power and is verified by the experimental results of the first
investigationl. It was concluded that since both the inner and
outer race of a bearing are not flat, but possess radii of
curvature which can significantly influence the shape of the
contact area which determines the magnitude of the thermal
resistance, a more exact analysis should be performed to take
into consideration the race curvatures.

An interface formed by the elastic contact of smooth solids
(angular contact instrument bearing) will consist of a very
large density of individual contacts which are said to comprise
the contour area. For very smooth surfaces (roughness less
than 5 & in rms value) these small contacts (real contact area)
will cover over 90% of the contour area. For such smooth sur-
faces it has been shown3™2 that the total resistance can be
predicted by considering the resistance due to the contour
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area only. For this reason, no distinction will be made be-
tween the real and contour areas when considering the elastic
contact and the thermal resistance.

In this paper it is assumed that heat transfer between con-
tacing smooth paraboloids occurs through the contour area
whose shape and size can be predicted by the Hertzian theory.
The much more complex problem of heat transfer between con-
tacting rough paraboloids will not be considered.

Elastic Contact Between Smooth Paraboloids

When two elastic solids having well-defined curved surfaces
Press against each other, an area of contact develops, the
shape of which depends upon the principal curvatures of the
surfaces near the point of contact, and the extent of which de-
pends upon the force with which the solids press against each
other. If the force is zero, the contact is a mathematical
point. Whenever one solid exerts a force against another, an
area of contact is formed which is generally elliptical. This
area increases in size with increases in the force, but the
shape remains invariant.

Since the shape and size of the contact area is of primary
interest because the thermal constriction is a function of
these contact area parameters, a few words will be said about
the results of the Hertzian theory which predicts these
parameters,

The complete Hertzian solution is available in standard texts
on elasticity6’7 and need not be repeated here. The solution
must be evaluated in terms of elliptic integrals of the first
and second kind. The semimajor and minor axes of the elliptic
contact area are given by

a=m [(3n/4)F A]1/3 (1)
and
b =n [(3n/4)F A]1/3 (2)
in which
: ¥
1 - Vi 1 - vg
A=(ﬂE1+ T[EZ)/(A+B) (3)
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The coefficients m and n are numbers depending on the ratio
A/B (Fig. 1). A and B are determined from the following
equations:

A+ B = % (—+—=+=—+ = (4)

and

2 1 1.2 v
-A=2[<—-— FE= ) 4 (——-—><—-—-—>coszm (5)

)
Pp P 0y 03 Pp PP
The constants A and B of Eqs. (4) and (5) have the same sign.

Contact Between Sphere and Paraboloid

The expressions which depend upon the radii of curvature of
the contacting solids can be reduced considerably when one of
the solids is a sphere. Let us designate the paraboloid as
solid 1 and the sphere as solid 2. Since the radii of curva-
ture of the sphere are identical in all planes through its
center, the angle P can have any value. But this has no in-
fluence upon the results since the term 29 in Eq. (5) is
multiplied by (1/p2 - 1/p%) which is zero. Thus Egs. (4) and
(5) simplify, for the paraboloid/sphere contact, to

A+ B =g (4142 (6)
P1 P1 )

and

1
B-A=g (- (7
20 0

If we first add Eqs. (6) and (7), we obtain an expression for
A, and if we then subtract one from another, we get an expres-
sion for B. Taking the ratio of A to B we obtain

A l/pi + l/p2

B 15, ¥ Us, ®

Contact Area Between Ball and Race

Since the curvatures of the inner and outer race are differ-
ent (Fig. 2), the expressions for A+B and B/A, will therefore
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differ for the ball/inner and ball/outer race combinations.
For the inner race where o is negative and p; is positive,
the expressions become

1 1 2

A+B=-—21-(-
Py Py P2

) (9)

and

A l/pi + l/Pz

T = (10)
B l/pi+ ]./p2
At the outer race where both p_and p' are negative, the
expressions become ° °
A+B=-%(——l—--l-,-+-2—) (11)
o Po P2
and
A -1/p" + 1/p
_ 0 2 (12)

B~ -1/p + 1/p,

Tllustrative Example

Consider as an example a bearing consisting of an inner and
outer race, 42 spherical balls of 3/16 in diameter. All parts
are fabricated from 440C stainless steel. The minimum radius
of curvature of both the inner jand oyter race is 52% of the
ball diameter. The maximum cd#ﬁﬁgﬁfzgﬂbf both inner and outer
race are 49/16 and 62/16 in, respectively. The physical
characteristics of races and balls are v = vy = 0.25 and
E, = Ey = 29,000,000 psi. It can be readily determined that
for these two types of contacts the principal characteristics
are as shown in Table 1.

Table 1 Bearing Geometric Characteristics

Inner race Outer race
o A+ B 5.825 5.24
T A/B 30.0 27.4
m 3.37 3.25
m/n 8.70 -9 8.20 -9
A 3.54 x 10 3.94 x 10
a 0.68 x 10”251/ 3 0.71 x 10251/ 3
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It will be noted that there is only four 7 difference between
the linear dimensions of the elliptic contact area at the inner
and outer race. Consider the smaller of the two values as
being typical of the contact area. For a bearing load of 17.3
1bs/ball the semimajor axis is a = 1.84 x 10-2 in and the semi-
minor axis b will be 8.70 times smaller. Thus the contact area
is very small relative to the characteristic dimensions of the
ball or races.

Thermal Model

As discussed in the previous section, the contact area be-
tween two smooth elastic paraboloids is always elliptic and it
was shown that the semimajor and minor axes of the elliptic
contact are quite small relative to the characteristic dimen-
sions of the contacting solids. 1In the light of these facts it
is assumed that the heat flow pattern in either solid will be
fairly symmetrical about the contact plane, and thus it can be
argued that the contact area is isothermal. The following
discussion will be limited to the determination of the thermal
constriction resistance when all the heat flows between the
solids via the elliptic contact, i.e., there is no heat flow
across the contact plane outside the contact area. This means
that the surfaces of the contacting solids are adiabatic out-
side the contact area.

It is assumed that one half of the thermal constriction re-
sistance problem can be adequately represented by an isolated,
isothermal area either supplying or receiving heat from an
other-wise insulated conducting half-space of thermal conduc-
tivity k;., It is necessary to obtain a solution for Laplace's
equation,V T = 0, in the half-space, z > 0, subject to the
boundary conditions

T(x,y) = To in T (13)

and

[aT(x,y,z)/az]z=O =0 outside T (14)

These equations form a so-called "mixed" boundary condition
over the surface of the half space, z >0, i.e., a temperature
condition over the contact area and a temperature gradient con-
dition over the rest of the surface. In general such boundary
conditions are difficult to satisfy by means of simple func-
tions, and this problem is even more difficult because of the
shape of the contact area.
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The boundary conditions on z = 0 are mixed, Eqs. (13) and
(14) and not amenable to solution unless ellipsoidal coordi-
nates are used._In ellipsoidal coordinates the Laplace equa-
tion becomes ~°

7T = 3/30 VED GI/3M) ] = 0 (15)
where
/ / 2 2 .
f£(A) =y (a  + D™+ MDA (16)

and a, b are the semimajor and semiminor axes, respectively,
of the elliptic contact area.

The boundary conditions corresponding to Eqs. (13) and (14)
are

A= 0, T = To, constant (17)

A= ®, T-0 (18)
The Dirichlet problem in ellipsoidal coordinates automatically
satisfies the mixed boundary value problem in Cartesian coor-
dinates.

Integrating Eq. (l5) twice we obtain as solution

A
_ d\ 1
T_AJ"O f()\)-&-B (19)

1 . .
where A and B~ are constants of integration.

Equation (19) can be written as

dA dA 1
o U B A

where the integral from zero to infinity is constant. Writing

1 ® 4
B =B A 21
* fx VE(L) (1)

the solution becomes
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T =B -A j (22)

f(K

The boundary condition at infinity requires that B = 0 and the
Dirichlet boundary condition over the elliptic area requires
that we put

A= (23)

The temperature distribution in the half-space can now be
written as

T " e (24)

The heat flux5’8 is

q, = -k 2/E(A) oT (25)

(- W - w12

and upon taking the derivative of Eq. (24) with respect to A
and substituting into Eq. (25) we get

2 k TO 1
9 = (26)

I 7o [ - WO w12

Equation (26) reduces to

(27)

2 .
for A » » because A= r , and A >> p and A >> V. At large
distances from the elliptic area, the heat flux is practically
radial and therefore one can write
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2 k To Q
q, = =2 tq =— (28)
r2 f d) anz
o VE(N)

The temperature distribution now becomes

«©
Q dA
T = 29
4mk ;h [ECN) (29)
and by the definition of thermal constriction resistance
R=1[T - T=>=1Q (30)
we have
o]
R = —L dx (31)

4 To V(a% + ) (B2 + VA

Holm9 has shown that Eq. (31) can be transformed into an equi-
valent form

R = {/4ka (32)

where

2
p=5/ = 1/2 (33)
{1- Kz sin2 0}

2
and Kz =1 - bz/a .
k is the thermal conductivity of the half-space, a is the
semi-major axis of the elliptic contact and § is a geometric

factor depending upon the size of the contact. This geometric
factor can be written as

q,:%K (34)

where K is the complete integral of the first kind of modulus

Equation (33) can be expanded and integrated term by term to
yield the following useful expression:
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2 2 2 2
2 - 4 - L 6 ! 2
y=1+ (_1.) K+ (_]'_..é) K™+ (l._3_§.) K~ + ",+[—ﬁ—2ﬁ——§] ot (35)
2 2.4 2.4.6 277 (nl)

Table 2 Typical Values of Geometric Factor ¥

a/b ) a/b Y
1.0 1.000 6.0 2.030
1.5 1.212 6.5 2.082
2.0 1.372 7.0 2.136
2.5 1. 402 7.5 2.172
3.0 1.610 8.0 2.214
3.5 1.702 8.5 2.252
4.0 1.784 9.0 2.286
4.5 1.856 9.5 2.322
5.0 1.920 10.0 2.352
5.5 1.980

Thermal Constriction of a Typical Element

We can now determine the thermal constriction resistance of
a typical bearing element (Fig. 2). We will make the analysis
general by assuming that the thermal conductivities of the
races differ from that of the balls. When all the heat flows
from the inner to the outer race via the balls, there will be
a constriction resistance at the inner race/ball contact as
well as the outer race/ball contact. Thus the total resis-
tance at the inner race/ball contact is

R, = y,/bkja, + y /4k,a, (36)

where k, and k, are the thermal conductivities of the inner
race an& ball, respectively. The constriction factor §; is
taken to be the same because of symmetry. A similar argument
for the outer race/ball contact allows us to write the resis-
tance as

RO = ¢o/4k3ao + ¢O/4k2ao (?7)

The total constriction resistance of a typical bearing element
is the sum of Eqs. (36) and (37)

wl llJo 1 11'1’. 11Jo
R = 4k, a,. + 4k, a + 4k QET +';—) (38)
1 3 2 i o
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For most bearings the linear dimensions of the elliptic con-
tact areas at the inner and outer races are practically the
same, i.e., aj = agy, and, therefore, §j = {q. Also the balls
and races are usually fabricated from the same material so
that ky = ky = k, and this permits us to write Eq. (3B) as

R = {y/ka (39)

Thermal Resistance of a Typical Bearing

The results of the elastic deformation and thermal constric-
tion analyses will now be used to obtain an expression for the
total constriction resistance of a typical bearing. When a
bearing is uniformly loaded, each ball in the assembly sup-
ports the same unit load. This means that the contact area
will be identical at each ball/race contact. Since there is
only 47 difference between the semimajor axes corresponding to
the inner and outer races contacts, respectively, it will be
assumed that { is the same for all contacts. Furthermore we
will take the smallér value of § corresponding to the inner

race contacts. Qﬂv&%&n'

When the heat flow pattern through the bearing is uniform,
we will assume that the constriction resistance is identical
for each bearing element. This means that the total constric-
tion of the bearing can be based upon the assumption that all
the elements are thermally connected in parallel.

When these conditions of uniform loading and uniform heat
flow are satisfied, the total constriction resistance becomes

R, = /Nka (40)

where N is the total number of balls in the bearing. Upon sub-
stitution of Eq. (1) into the expression for the total con-

striction resistance we get
Aoy}

Lk e
w i R, - i (m/n) (41)

k m N2/3 [(3ﬂ/4)A]1/3 [f/sin a]1/3

f

We note that Eq. (41) depends upon a number of geometric and
physical parameters as well as the axial load. For a particu-
lar bearing specified by its principal radii of curvature,
number of balls, Young's modulus and Poisson's ratio, the para-
meters m, n, §, N and A are fixed being independent of the
applied load. This means that some of the parameters in Eq.
(41) can be lumped together and treated as a bearing constant.
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The bearing resistance can be rewritten in the following
simple form:

_ 1/3
R, = Cl/k B (42)
where B = F/sin « and C1 is given by
c - ¥(m/n) (43

Lo w3 (awe a3

For the two bearings used in the test program the bearing con-
stant C, is as shown in Table 3.

Table 3 Test Bearing Properties

Type 3TAR 33-42U 3TAR 49-62U
Bore, in. 2.0625 3.0625

0D, in. 2.6250 3.8750
Balls Ll 42

Ball diameter, in. 1/8 3/16
Clearance, in. 0.0007-0.0012 0.0007-0.0012
Ball/race material, stainless steel 440C 6 440C 6
Young's modulus, psi ° 29 x 10 6 29 x 10 _6
Coeff. of expansion, 1/°F 5.6 x 10 5.6 x 10
Hardness, Rockwell '"'C" 60-65 60-65
Thermal conductivity, BTU/HR FT°F  13.8 13.8

C1 1255 1130

The effect of applied load, bearing clearance, contact angle
and thermal strains will be discussed in the following section
utilizing the simple expression given by Eq. (42).

Factors Influencing the Bearing Load

There is a complex relationship between the axial load, the
bearing load, the initial bearing clearance and the heat flow
rate. The complex relationship arises from the thermal expan-
sion of the balls and races because there is a temperature dif-
ference between the races, and the elastic compression of the
balls and races. In other words, the clearance under load is
equal to the initial clearance less the expansion due to ther-
mal effects plus the displacement due to the elastic compres-
sion. With the aid of the nomenclature shown in Fig. 3, the
relationship discussed above can be expressed in the following
manner :
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CBF/sin o
2(p' - p,)(L - cos @) =6 - C AT + (44)
iz °o 2 C + C_(F/sin o)/ 3
4 5
. . 5,6
The constarts in Eq. (44) are given by
= roa
C, = B(p, - 0,) (45)
— 1 1
Cy = 0i/8; + p5/8, (46)
C, = 21E (47)
4 Cé N 1/3 1 - vz 1
Cg = ';T-C; 7 ) (48)

The constants Cg and G, in Eq. (48) depend upon the principal
radii of curvature through the geometric ratio A/B and values
are found in Seely .

Equation (44) can be cast into a form which clearly shows
the relationship between the axial load, the bearing load, heat
flow and the initial bearing clearance. For the temperature
difference in Eq. (44) write

aT = Qw, = Qc /"3 (49)
Replace the contact angle dependence by writing

cos o = F/ B2 - p2 (50)

We now have

2(p; = py) =8, - (3102(2/]31/3 + C4B/[C, + 0532/3] GL

Knowing the initial clearance, Eq. (51) can be solved for B as
a function of the heat flow rate Q after having solved Eqs.
(43), (45-48) for the constants appearing in Eq. (51). The
initial clearance is not known. The bearing manufacturer
specifies a range of values for a typical bearing. Therefore,
the best that one can do analytically is to solve Eq. (51)
with 6 as a parameter., Otherwise a series of experiments can

be performed to determine the functional relationship between
B, F, and Q.
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Experimental Verification of the Theory

A systematic test program was conducted to obtain data which
was compared with the values predicted by the theory. Two
different sizes of angular contact instrument bearings were
tested. Dry bearings were used and all tests were conducted
in a vacuum of about 5 x 1072 Torr. The test variables were
the total axial load and the total heat flow rate. The experi-
mental apparatus consisted of a vacuum chamber and vacuum
pumps, a loading device, a heat source and heat sink, radia-
tion shields and an instrument console.

A 15-watt (nominal) button heater was mounted on a copper
block called the round centered hot block (Fig. 4). This hot
block sat on the copper inner race. The interfaces between
the hot block and keeper as well as the keeper and inner race
were coated with Dow Corning 340 Silicone Heat Sink Compound.
This insured that the heat path from the button heater to the
inner race offered negligible thermal resistance. Thermocou-
ples placed in the hot block and the keeper verified this.
The outer race sat snuggly in the aluminum bearing support
which stood on the base plate which acted as the heat sink.
The base plate was cooled by a steady supply of city water.
All interfaces were well greased with the heat sink compound.
A 15-watt button heater was attached to an aluminum radiation
shield which was placed under the inner race keeper (Fig. 4).
This insured that all the heat from the source went to the
inner race. Thermocouples were welded to the inner and outer
race at diametrically opposite locations. They were also
epoxied to insure that they would not be detached when handled.

The variable compression load on the bearing was supplied
through a calibrated horseshoe-shaped force gauge mounted above
the supermica insulating block., The insulating block comple-
tely enclosed the heater and rested on the hot block.

The bearings used in the tests were guaranteed by the sup-
plier to be dry. They were kept away from oil and other con-
taminants when not being tested. All tests were performed
with the bearings fixed in place and the total heat supplied
by the button heater flowed from the inner to the outer race
via the balls. '

After mounting the test bearing, the chamber was pumped down
to about 5 x 1072 Torr. and these three procedures were fol-
lowed to obtain the necessary data. In one test program, the
load was fixed and the heat to the bearing was increased from
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2.5 watts to a maximum of 15 watts in increments of 5 watts.
In the second test program, the heat to the bearing was fixed
while the total axial load was increased up to a maximum of
about 500 1b. The third test program consisted of a mixture
of load and heat flow changes from a minimum load and heat
flow up to a maximum load and heat flow.

The outer race temperature varied from 70°F up to 81°F while
the inner race temperature varied from 91°F up to a maximum of
245°F.

Correlation of Test Data and Discussion

The thermal resistance of a bearing given by Eq. (42) is not
amenable to solution because the bearing load depends impli-
citly upon the temperature difference which is a function of
the resistance. This can be seen by examining Eq. (44). If
an initial bearing clearance of 0.001 in. is used in Eq. (44)
or Eq. (51) one can determine the contact angle directly or
the bearing load. Once these are known for a particular heat
flow rate, then the thermal resistance can be calculated as a
function of the axial load. The theory predicts values of the
thermal resistance which show the same trend as the empirical
data.

It was decided to use the second alternative described above
to determine the relationship between B, F and Q. The results
of the preliminary tests are shown in Figs. 5 and 6 where the
bearing load is plotted against the axial load with heat flow
as a parameter. At low axial loads the thermal expansion
effect is important. Here it is seen that for a fixed axial
load an increase in the heat flow results in an increase in
the bearing load. This effectively reduces the thermal resis-
tance. As the axial load increases, the effect of thermal ex-
pansion decreases. For loads above 600 1lb the thermal ef-
fects are essentially negligible.

The relationship between bearing load and axial load as a
function of heat flow rate was subsequently used to correlate
all the experimental data obtained following the three proce-
dures outlined in the previous section. There was excellent
agreement between the experimental data and the predicted
values of the resistance. This is clearly seen in Figs. 7 and
8. At low axial loads the resistance varies from a low value
of about 10°F/watt up to a high value of about 22°F/watt for
the 2.5-watt and 15-watt heat flow rates, respectively. The
difference is due to thermal expansion effects as described
above.
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The thermal analysis was based upon the assumption that
radiation effects are negligible. For the maximum temperatures
observed (245-81) it is estimated that the thermal resistance
due to radiation heat transfer would be about BOOOF/watt.

This is based upon the assumption that the inner race radiates
directly to the outer race and both surfaces have emissivities
of 0.8. The presence of the balls should increase the radia-
tion resistance considerably. Thus the assumption of neglibi-
ble radiation transfer is valid for the low loads with tempera-
ture differences of 164°F and temperature levels of 245°F at
the inner race. In the thermal analysis it was implicity
assumed that all the resistance of a bearing can be attributed
to the constriction of heat flow lines in the neighborhood of
the contact areas at the ball/race interfaces. This in effect
neglects the resistance to heat flow within the races and a-
cross the balls. The assumption used should become less true
at high axial loads when the contact areas are large and the
constriction resistances are small. In other words the thermal
resistance through the races and balls, if important, should
influence the total resistance at high axial loads. This was
not observed and so it is concluded that this assumption is
valid.

Conclusions

The analysis presented suggests that heat transfer through a
bearing can be correlated extremely well provided that the
surfaces are smooth, the contacts are formed elastically, the
bearings are dry and placed in a vacuum, there is no radiation
heat transfer across the gaps, and the bearing does not rotate.
An expression for the total constriction resistance of a typi-
cal angular contact bearing is presented which shows that
several physical and geometric parameters play a part in deter-
mining the resistance. It is also shown how thermal expansion
and elastic compression of the balls and races influence the
resistance. For a particular bearing having fixed geometric
and physical characteristics, some of the parameters can be
lumped together such that the bearing resistance can be corre-
lated with the axial load and heat flow.

It is recommended that further work be done analytically and
experimentally to determine the effects of lubricants, gases

and rotation of the bearing.
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