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THERMAL CONTACT CONDUCTANCE OF
NOMINALLY FLAT, ROUGH SURFACES
IN A VACUUM ENVIRONMENT

M. Michael Yovanovich* and H. Fenech/
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Cambridge, Mass.

Abstract

The steady-state thermal conductance coefficient at the inter-
face formed by nominally flat, rough contacting surfaces placed in a
vacuum environment has been investigated for the case of negligible
radiation effect. The resistance (reciprocal of conductance) is be-
cause of the surfaces of solid bodies, which, when pressed together,
actually touch at isolated spots and, therefore, the real contact area
is a small fraction of the total or apparent area. Thus the heat trans-
fer across the interface is confined to the contacting spots resulting
in converging and diverging heat flow lines at each contact spot. The
analysis indicates the conductance is dependent upon the material
properties, the surface geometry, and the interface deformation
under the applied load. Test results show conclusively that the
physical interaction of the surface asperities cannot be treated as
purely plastic yielding or purely elastic yielding. The elastic-
plastic interaction of the asperities has been taken into consideration
by correlating the applied load with a dimensionless parameter
which is a function of the surface geometry and the surface deforma-
tion due to loading. -
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Nomenclature

outer radius of heat channel

total projected apparent area of contact
total projected real area of contact

average radius of contact spot

modulus of elasticity; Em= 2 EjEg/(E; + Eyp)
harmonic mean value

thermal conductance coefficient

yield pressure (load per unit of projected area)
thermal conductivity; kp,= 2 kjko/(k; + ko)
harmonic mean value

number of contact spots

number of contact spots per unit area
applied pressure = W/A

apparent pressure on contact = W/A,’

heat flow rate per heat channel

contact resistance = AT/Q

surface area

temperature

temperature infinitely far from interface
total load on the contact

separation of mean lines

c/a = ‘\/Ar/ A,
root mean square roughness
root mean square slope

. compliance
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Subscripts

zero load condition

metals 1 and 2, respectively, in contact
apparent

elastic deformation

harmonic mean value

plastic deformation

real
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Introduction

During the past fifteen years many papers and reports on the
subject of thermal contact conductance have been stimulated by
recent technological developments in the power reactor field and in
aerospace work. The very high heat fluxes encountered in reactor
design required that the thermal conductance between the fuel elements
and the metal cladding should be known to determine the fuel tem-
perature. The aerospace industry on the other hand, required in-
formation about the thermal conductance between light-weight
materials operating in a vacuum. !,9,10
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This paper is concerned with the analytical and experimental
determination of the steady-state thermal contact conductance be-
tween nominally flat (i.e., not wavy) rough surfaces placed in a
vacuum environment and operating at an interface temperature such
that the radiation is negligible.

Description of Surfaces

A careful examination of profiles of real surfaces obtained by
means of surface analyzers, such as the one described by HenryS or
by any of the several commercial machines available, reveals that
real surfaces of solid bodies are both rough and wavy. The rough-
ness component, often referred to as the microscopic roughness, is
due to the irregularities on the surface which result from the
inherent action of production tools. These are deemed to include
traverse feed marks and the irregularities within them. Roughness
can range from 2x10-6 in. rms for very smooth surfaces to
600x10-° in, rms for the roughest surfaces.

Waviness or macroscopic roughness is that component of the
surface profile upon which roughness is superimposed. The waviness
may result from such factors as machine or work deflections,
vibrations, chatter, beat treatment, or warping strains. The length
of these waves, depending on quite a number of conditions, varies
from 0.04 to 0.40 in. and the height accordingly varies from 80x10" 6
to 1600x10-6 in. The waviness component can appear as cylinders or
spherical caps, and may or may not be periodic in character. A
surface without waviness will be called nominally flat in this work.
The effect of the surface waviness upon the contact conductance will
be considered in a subsequent paper.

The nominally flat, rough surface is characterized by having
a series of peaks and valleys. The heights of the asperities seldom
exceed 600x10-6 in. rms. The most characteristic range of the in-
cluded angle at the peak is between 1600 and 1640. 14,15 The
smallest included angle which occurs with the roughest surfaces
would seldom be smaller than 150°. The crests or peaks of the
asperities are surfaces of very gentle curvature and not as shown in
Fig. la. The vertical scale is exaggerated with respect to the hori-
zontal scale by a factor of 10 to 100, so that the sides of the peaks
and valleys appear much steeper than they really are, and the curva-
ture of the peaks and valleys appears greater than the actual curva-
ture shown in Fig. 1b.
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Thermal Analysis

An examination of nominally flat, rough surface profiles shows
that, for small compliances (relative displacement of surfaces in the
direction of load), as a result of light to moderate pressures, the
contact spots are small and few. Each spot is assumed to be circular
in area and concentric with the heat channel which supplies the spot.
Since the slopes of the asperities which contribute to the contact are
generally less than 10°, and the radius of the contact is orders of
magnitude smaller than the radius of the heat channel, the system
can be regarded as one semi~infinite solid in contact with another
over a small circular area. As the applied load is increased, the
number and the size of the contact spots increase so that the model
proposed for light loads is no longer applicable. In this case, the
influence of one contact spot on another must be considered in the
analysis.

The thermal conductance of a contact h is defined as the ratio

h = (Q/A,)/AT, (1

where Q is the heat flow rate through the contact, A the total pro-
jected area of the contact perpendicular to the direction of heat flow,
and AT, the additional temperature drop required to overcome the
therma‘l: resistance of the contact. This temperature drop is obtained
experimentally by extrapolating the temperature distribution in the
heat flow direction from regions outside the disturbance to the con-
tact plane, as shown in Fig. 2. .

The thermal contact resistance following the electrical analog
is given by

R= ATc/Q . (2)
and
dR = ds/k 6A (3)

where k is the thermal conductivity, ds is the elemental length in the
direction of the heat flux vector, and d A is the elemental area per-
pendicular to the heat flux vector.

Combining these definitions one can then write the relation-
ship between the thermal conductance and resistance as

1

= dR=S - ds 4)
hAa S 8 SAk.—'éA
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The problem of heat transfer with light loading reduces to
that of the heat flow between two semi-infinite regions 0< zj < =,
0 < z3 < =, having thermal conductivities ky and kg (Fig. 3) which
are in contact over the radius c, the center of the contact being taken
as the origin of the cylindrical coordinate system (r, 0, 2).

The following analysis is based upon steady-state conditions,
constant thermal and material properties, clean surfaces (no oxide
film resistance), no interstitial fluid (vacuum), and negligible radi-
ation transfer across the voids.

The solution to the differential equation

2y

2
r

4}
Q@

2
+ +2T - (5)
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N

for the axially symmetric case (see Appendix A) is

2Tk, im
T1= o™ 7K +k2)S sm(mc)Jo(mr)-?ﬁ- (6)
-2Tk o
T,= ;r—(}—l—%il—z—) ) e 2 sin(mc)Jo(mr)% | )

The contact temperature is therefore

Tk

17 & +k2)

z= 0 r<c (8)

and is seen to be independent of the size of the contact and is uniform
over the contact area.

The heat flow over the contact area is found by integration to

be
2 T o
i -m2 dm
= ..2 r . d
Q Tk, So ol ey & > k), e sm(mc).T o(mr)-uT]z= ;
(9
therefore,
4k sz c
= 120" . o .
Q= (k1+ kz) 2 kao c (10)
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It is seen that the heat flow varies linearly with the radius of
contact, and the total thermal contact resistance can now be express-
ed as

R=—3 T 2NE_c 11)

if there are N contact spots over the apparent arez Ay
Combining Eqs. (4) and (11) and defining ¢ =€ a, n as the

number of contact spots per unit area such that nral= 1, and €= a/c,

gives an expression for the thermal conductance for light loading

h = (247 Yk Y1 ¢ (12)

For the case of high apparent pressure (Fig. 4), where the
influence of one heat channel upon another cannot be neglected, the
total constriction resistagci for N parallel heat channels can be
approximately expressed’:’ 8 as

2 -1a 2a
R(N,¢) = 5—="=— tan ~ = - —=—— 13)
2rk_Nec c kmeaZ (

Since the apparent area A= Nra2 and n7ra2= 1, then by direct
substitution the conductance can be written as

k +n
m - 2 1 -11
—3—= ———n [ 3¢ tan - 1} (14)

For values ofe = 0.03, tan > 1/e can be calculated from [(n/2)-¢€] .
It can be seen that in the limit as € goes to zero, the right hand side
of Eq. (14) reduces to ¥7/2¢ and the equation is identical to the
equation determined for the case of light to moderate loads.

It is interesting to note that the dimensionless heat transfer
number is composed of the contact conductance, the thermal con-
ductivity of the metals, and the square root of the number of contact
spots per unit area. The parameter y1 is actually the reciprocal of
the distance or pitch between contact spots and implicitly takes into
consideration the surface geometry and some effects of the applied
load.
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Surface Deformation

Based upon the thermal analysis of the previous section, it is
evident that the two most important surface parameters are the num-
ber of contact spots per unit apparent area and the ratio of the real
to apparent area. The task of this section is to correlate the surface
parameters \/n and € with the applied load and the material prop-
erties through a dimensionless parameter based on the compliance
of the two surfaces.

Determination of ¥n: In order to determine the compliance vs.
applied load, we must first obtain values of Vi vs. the compliance by
considering the interaction of linear profiles of the two contacting
surfaces using a profilometer. If we assume that the asperities are
randomly distributed over the contacting surfaces, then recordedll, 12
profiles along any diameter of the surface will be representative of
any other diameter. This will allow us to obtain the three-dimen-
sional configuration of the surfaces by recording only one profile
from each surface. The initial, or no-load position, is determined
when contact is first established at three spots. To simulate an in-
crease in pressure, the profiles are moved by small increments in
a direction perpendicular to the contact plane;this relative displace-
ment of the two profiles is termed the compliance of the two surfaces
under load and will be designated as w. This technique is best
accomplished by reproducing the two profiles on transparent sheets
of paper and counting the number of times the surfaces interfere
with each other as the compliance is increased. The two profiles
are then displaced a slight distance parallel to the contact plane and
the counting procedure is repeated as the compliance is increased
and the number of contact points is then averaged. The curve of 4n
vs. the separation of the mean lines is extrapolated to the value V3,
which is arbitrarily taken as the initial, or no-load position and is
designated as Yq. It is found that the initial separation is three to
four times the rms value of the roughness of the surfaces. The
graphically determined values of vn vs the dimensionless parameter
w/Y, for two surface roughness are plotted in Fig. 5. It should be
noted that this is a geometric relationship and is therefore independ-
ent of the material properties of the surfaces.

Determination of €:8The real area of contact between nomi-
nally flat, rough surfaces having a random distribution of asperity
heights about a mean plane can be approximated by considering the
interaction of an ideally-flat, rigid surface with a rough surface
having a rms ¢ = Vo2 ozh'. where o7 and o3 are the rms devi-
ations of surfaces 1 and 2, Assume that all the asperities can be
idealized as cones having a distribution of heights and base angles.16
Since it is known that the base angle (see Fig. 1b) varies only slightly
from the rms of the slope, it will be assumed that the tangent of the
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base angle is independent of the distance from the mean line. At any
penetration y of the rigid flat plane into the rough surface, n asperit-
ies per unit area having an average contact radius r are contacted.
As the rigid plane moves an incremental distance dy, dn additional
asperities are contacted and the following relation

A = A_+ dA (15)

can be written as

oo+ (dn/dy)dykr + dr)° = orr? + day (16)

If we assume, based upon continuity of material, that the

average contact radius r is linearly proportional to the displacement
of the flat surface into the rough surface, we can write ‘

dr = dy/tan 0 an

Using the result from statistical theory (4) and denoting by j the ratio
of the maximum peak to the rms, o (see Fig. 1a), we have

dn/dy = (2nj/o)(1-y/jo) (18)

" and neglecting terms of (cly)2 and smaller, it can be shown that

dA/A = (2/y)dy + (2ik)dy - (2y/o°) dy (19)
" The boundary conditions to be satisfied are at

=0, A =0 and y=jo, A=A 20
y y y=lo, A= Ay (20)

The second boundary condition states that all of the material above
the mean plane must flow into the valleys below the mean plane when
the compliance has reached its maximum value jo.

The solution to Eq. (19) satisfying the boundary conditions
yields the following interesting result:

.2 2
= a/Ay= W/ fed (- W/Yo) (21)
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where w is the compliance of the two surfaces under an applied load
and Y, is the initial, or no-load, separation of the mean planes.
Equation (21) is plotted as a function of the factor j in Fig. 6, where
jisa characterig&ic of the surface if the length of the sample contains
many asperities.

If it is assumed that the asperities are deformed plastically,
the real contact area can support only the stress at which the
material begins to yield. For metallic surfaces, this stress is the
microhardness H of the material determined in a Knoop or Vickers
test. Since the microhardness for the asperity shape considered is
almost 3Y, where Y is the yield stress of the material under tensile
forces, the agparent pressure for plastically deformed asperities is
glven by 13,1 y 20

= 2
P, = 3Y €

(22)

If the deformation of the surfaces were assumed to be com-
pletely elastic, then the geometric parameter € can be determined
from the classical elastic theory of Hertz. The following defor-
mation analysis is based upon these assumptions: 1) all asperities
have spherical caps, 2) the number of asperities in contact will be
determined by the graphical analysis of profiles, 3) the surfaces are
isotropic (i.e., no lay), 4) the two surfaces are of the same
material and 4= vg= 0.3, 5) the two surfaces are similar, i.e.,
R;= Ry = R, 6* the two surfaces are symmetrical about the contact
plane, and 7) the line of force always acts through the centers of
curvature of contacting asperities.

~ Elastic theory shows that the following simple geometric re-
lationship between the radius of contact r, the iadius of curvature R,

and the compliance w, holds {see Appendix B)2
2
r” = (wR)/2.0 (23)
The second geometric parameter can now be determined from
2 2 2
. 2 _ $= Nlu'r1 . Nzirr2 . N31rr3 . 24y
e Ay Aa . A, Ay
or
m
62=L§:(u‘ -w)n,, ,-n)R (25)
e 2.0 m 1"Vi+tl {74
i=o ’
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where the summation over the subscript i is to account for the new
contact points which appear when the compliance w increases byAw,
an arbitrary increment.

Similarly, one can show that the apparent pressure can be
related to the surface geometry (n,R), the compliance w, and the
elastic modulus E, by the following relationship:

P

/o ’
(fg) I ;65 i (“"m- wi?’ - (ni+ l‘ni)Ril/2 (26)

1o

Values of € and Pa/E as given by Egs. (25) and (26) are plotted in
Figs. 7 and 8 for different values of j.

To determine whether the asperities deform elastically or
plastically we have shown in Fig. 9 the experimental values of h/kp,
vs. Py (apparent pressure). These experiments were performed in
our laboratory and are fully described in Ref. 4. In the same figure
is shown the calculated values of h/ky, using Eq. (14) where the con-
tact ratio € was obtained using 1) the elastic theory outlined pre-
vi%usly and Eq. (25), and 2) the plastic theory using the relationship
€58 = Pa/ H where H is the yield pressure, and the corresponding
compliance ratio (w/Yo) was calculated from Eq. (21). The number
of contact points was obtained as in part 1 using Fig. 5 described
earlier.

Figure 9 shows that the deformation of the surfaces at light
to moderate pressures is due to the plastic deformation of the as-
perities, but at higher pressures the actual deformation begins to
deviate from the completely plastic assumption. At the light
pressures the assumption of completely elastic deformation of the
asperities is erroneous but at higher pressures this effect seems to
be important,and is probably the reason that the experimental obser-
vations deviate from the assumption of completely plastic deformation.

The increasing elastic behavior of the contact as the load in-
creases can physically be explained by the following facts. As the
load increases the number of contact spots also increases. This pro-
duces an increasing but more uniformly distributed pressure on the
apparent area of contact. Most of the contact spots have already
been plastically deformed at the utmost and further deformation has
to take place by elastic displacement of the sublayers.

Since the phenomenon of surface interactions at large
pressures is quite complex and therefore intractable, it was decided
to obtain empirical information about the surface interactions under
loading conditions. A survey of the literature revealed that several
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authors had investigated this mechanical phenomenon under various
surface conditions, geometries, and physical loads. Invariably the
investigators were concerned with relatively smooth surfaces under
very light loading so that only a small number of asperities per unit
area were contacted, and therefore the deformation of these contact-
ed asperities was completely plastic.

The most interesting and useful paper19 showed experimental
data of applied load vs. surface separation for three metals. In the
present work, the aluminum and stainless steel data have been re-
plotted as the apparent pressure vs. the dimensionless compliance,
Figs. 10 and 11. Since empirical data of the apparent pressure
against the dimensionless compliance for these metals at higher
pressures were not available, it was decided to use experimental
information, such as¥n vs P, for aluminum surfaces (Fig. 12) and
b/ky, ve P, for the stainless-steel surfaces (Fig. 9).

With the assumption that Vn vs8 compliance is a geometric
relationship independent of the material under consideration, then
the apparent pressure as a function of the dimensionless compliance
for any metal can be obtained from empirical data relating the
number of contact spots per unit area against the apparent pressure.
The information in Fig. 12 is shown cross plotted in Fig. 10 and
compares quite favorably with the information in Ref. 19. The heat-
transfer data for stainless-steel surfaces yielded the plot of Fig. 11,
which shows again a very satisfactory correlation of data from two
independent sources.

The experimental datal® was obtained for metals which had
relatively smooth surfaces, and for light apparent pressures that
never exceeded 120 psi; whereas the other experimental data was ob-
tained for surfaces that were, relatively speaking, much rougher and
the pressures ranged from a minimum of 130 psi to a maximum of
about 15,000 psi.

The good agreement under these conditions is therefore most
encouraging and suggests that the basic assumptions are quite good.
An examination of Figs. 10 and 11 shows that, when the apparent
pressure is plotted against the dimensionless compliance, the effect
of the surface roughness is not very strong. However, further load-
compliance tests should be made for various materials having a
range of roughnesses before definite conclusions can be made.

To check out the basic assumptions and the conclusions drawn
from the load-compliance plots, test data for stainless steel surfaces,
one of which was very smooth, whereas the other had a roughness of
42x10-6 in., were compared with the predicted values based upon
Figs. 5,6,11 and the thermal conductance equation (14), Fig. 13. Ex-
tremely good agreement was obtained between theory and test over
the entire load range.
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Conclusions

The thermal contact conductance equation is in good agree-
ment with the experimental results when the geometric parameters
are determined from experimental load-compliance data. The
graphical method proposed for determining the geometric parameter
\Ep and Eq. (21) determined from geometric and continuity consid-
erations gave good results for the two cases. This method is there-
fore considered to be applicable for any contact between nominally
flat, rough surfaces in a vacuum environment. Since the actual de-
formation of the surface or surfaces appears to be plastic at light
loads and then elastic-plastic at higher loads, no one theory, at the
present, is capable of predicting the actual number of contact spots
and the real area of contact under all surface geometries and
apparent pressures. One therefore must resort to experimental
data to obtain these geometric parameters.

Appendix A
The solution of Eq. (5) must satisfy the following boundary
conditions throughout the two regions:
8T1/82=—8T2/8z=0 z=0 r>c¢ (Al)
which states that there is no heat flow across the voids. In the
absence of sources or sinks the conservation of energy requires that
k(T8 )= -k, (B T2/8 z) z>>0 (A2)

and temperature continuity across the contact requires that

T1=T2 z=0 r <c (A3)
Letting

T, = To at z1= w© (A4)
and T2 = 0 at zz= L] (A5)

it can be shown by direct substitution that®
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T, =T, - So P(m) e 22 J (mr) dm (A6)
and .
T, =S ¢(m) e 2 ;To(mr) dm (A7)
(o]
for any m.

¥

Satisfying the boundary conditions speci.fg‘ed previously, the
unknowns ¥(m)and ¢(m) can be determined to be

2 Tok2 sin(mc)
m# (k, + ky)

k1
¢(m) = L ym) and Y(m)=

(A8)
Ky
Apﬁendix B

From classical elastic theory the radius of contact r and the
compliance « for two balls in contact are given by

- 1/3
_ | ax Fly * KRR, ] a1
LY ® TRy @1
or 2 FAk, *+ k)°®, + Ry) ]1/3
e T R R, (52)

Assuming that both spheres have the same elastic propérties and
taking v = 0.3, this becomes

R.R 1/3
_ F 172
r= 1.109 [ E (R—————l + Rz)] (B3)
1/3
+ .
w= 1.23 [—’1: E‘%R—Rzl] (B4)
E 12
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Fig. 1b Typical asperity.
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Fig. 12 Contact points vs apparent pressure,
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Fig. 13 Heat transfer coefficient vs apparent pressure,
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