
Micro and Macro Hardness Measurements,

Correlations, and Contact Models

M. M. Yovanovich∗

Microelectronics Heat Transfer Laboratory

Department of Mechanical Engineering

University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

Brief reviews of Brinell (Meyer) and Rockwell indenters and macrohardness tests,
Berkovich, Knoop and Vickers indenters and microhardness tests, and nanoindentation
tests using the Berkovich indenter are given. Vickers, Brinell and Rockwell C indentation
results for Ni 200, SS 304, Zr-4, and Zr-Nb are reported and correlation equations for mi-
cro and macrohardness versus penetration depth are given. Temperature effects on yield
strength, Brinell and Vickers hardness are given and correlation equations are presented
to account for elevated temperatures. Models are presented for calculation of the appro-
priate value of contact microhardness which depends on apparent contact pressure and the
effective surface roughness of the joint. Examples are given to illustrate the use of the
correlation equations.

Nomenclature

A surface area of a single tube, m2

Aa, AcAV apparent area, contact area, m2

a contact radius, m
B unloading curve correlation coefficient
Cc dimensionless contact conductance, Cc = σhc/mks

CT correlation coefficient, ◦C−1

◦C degree Celsius
cp, cv specific heats at constant pressure and volume, J/kgK
c1 Vickers correlation coefficient, GPa
c2 Vickers size index
D ball diameter, mm
d indentation diameter or diagonal, mm
dV Vickers diagonal, mm
E specimen elastic modulus, GPa
Ei indenter elastic modulus, GPa
Er reduced elastic modulus, E−1

r = (1 − ν2)/E + (1 − ν2
i )/Ei, GPa

erfc(·) complementary error function
erfc−1(·) inverse complementary error function
F indentation load, mN
fg gas gap function
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g acceleration constant, 9.81m/s2

H nano, micro, macrohardness, kg/mm2, GPa
HB Brinell hardness number, kg/mm2, GPa
HBGM geometric mean of minimum and maximum Brinell hardness, kg/mm2, GPa
HBK Berkovich hardness number, kg/mm2, GPa
HK Knoop hardness number, kg/mm2, GPa
HM Meyer hardness number, kg/mm2, GPa
HRC Rockwell C hardness number
HV Vickers hardness number, kg/mm2, GPa
hc, hg, hr contact, gap, radiation conductances, W/m2 · K
hj joint conductance, hj = hc + hg + hr, W/m2 · K
h indentation depth, nm
hf , hmax final and maximum indentation depths, nm
K absolute temperature, kelvin
Ig gas gap integral
J unit of energy, joule
k thermal conductivity, W/m · K
k1, k2 solid thermal conductivities, W/m · K
kg gas thermal conductivity, W/m · K
ks effective thermal conductivity, ks = 2k1k2/(k1 + k2), W/m · K
M gas gap parameter, M = αβΛ, m
m1,m2,m mean asperity slopes, effective slope, m =

√
m2

1 +m2
2

n contact spot density, m−2

P contact pressure, GPa
P indentation load, mN
Pa apparent contact pressure, MPa
Pg gas pressure, kPa
Pg,0 reference gas pressure, kPa
Pmax maximum indentation load, mN
Pr Prandtl number, ν/α
Q heat transfer rate, W
Qj joint heat transfer rate, W
R thermal resistance, K/W
Sy yield strength, GPa
S contact stiffness, dP/dh, mN/nm
T temperature, Celsius and absolute, ◦C, K
Tg gas temperature, K
Tg,0 reference gas temperature, K
Trm room temperature, ◦C
Tm melt temperature, ◦C
t local gap thickness, µm
∆Tj joint temperature drop, K
u dimensionless local gap thickness, t/σ
W energy per unit time, watt
Y mean plane separation, µm
Z normalized Brinell hardness, Z = HB/HBGM

Greek Symbols
α thermal diffusivity, m2/s

2 of 28

American Institute of Aeronautics and Astronautics



α1, α2 accommodation coefficients
α gas gap accommodation parameter, α = (2 − α1)/α1 + (2 − α2)/α2

β gas gap parameter, β = 2γ/(γ + 1)Pr
γ ratio of specific heats, cp/cv
ε relative real contact area, ε =

√
Ar/Aa

ε factor in nanoindentation test
Λ molecular mean free path, nm
Λ0 reference molecular mean free path, nm
λ relative mean plane separation, Y/σ
µ micro
ν Poisson’s ratio
π pi
ρ mass density, kg/m3

σ1, σ2 surface roughnesses, µm
σ effective joint roughness σ =

√
σ2

1 + σ2
2, µm

σ0 reference effective joint roughness, 1µm
ψ thermal constriction parameter, ψ = (1 − ε)1.5

Subscripts
a apparent
B Brinell
BK Berkovich
b bulk
c contact
e effective
g gas, gap
i indenter
K Knoop
M Meyer
m mean, material
max maximum
min minimum
RC Rockwell C
r real
V Vickers

I. Introduction

Whenever heat transfer occurs across a mechanical joint formed by two conforming rough solids there
is a measurable temperature drop ∆Tj which is associated with the joint heat transfer rate Qj . The

joint temperature drop and the joint heat transfer rate are related to the joint conductance hj and the joint
thermal resistance Rj by means of the following relationships:

Qj = hjAa∆Tj and Qj =
∆Tj

Rj
(1)

where Aa is the apparent area (nominal area) of the joint. The joint conductance and resistance are related:
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Rj =
1

hjAa
(2)

Thermal joint conductance hj is a complex microgeometrical, thermal, and physical parameter which
depends on the thermophysical properties of the contacting solids, the thermal properties of the substance
in the microgaps, and the mechanical load applied to the joint.

The models for predicting the joint conductance are based on three separate models: (1) a microgeometric
model that describes the surface roughness features of the contacting surfaces and the resultant contact, (2)
the mechanical interaction of the contacting asperities, and (3) the thermal constriction/spreading resistances
at the microcontacts and the heat transfer across the microgaps by conduction only or conduction and
radiation when the gap substance is transparent to radiation.

There are mechanical models for conforming rough surfaces whose contacting asperities deform (i) elas-
tically, (ii) plastically, or (iii) elastoplastically.

Several microgeometrical, mechanical and thermal models have been developed over four decades by
numerous researchers for the many types of joints that occur in the microelectronics and aerospace industries.
Comprehensive reviews of the various types of models are presented in Chapter 41 and Chapter 162.

This paper will be restricted to the joint formed by two conforming rough surfaces as depicted in Fig. 1.
The joint of interest can be modeled as an equivalent joint formed by the contact of an equivalent rough
surface and an ideal, smooth, flat surface as shown in Fig. 1.

Figure 1. Typical Joints Between Conform-
ing Rough Surfaces.

In this paper the plastic contact model will be examined
in some detail because it can be applied to many practical
problems encountered in industry. The plastic contact model
requires knowledge of the microhardness of the contacting as-
perities. It will be shown that this important physical param-
eter appears in the contact and gap components of the joint
conductance.

The paper will review the different types of indentation tests
using different types of indenters which result in a measure
of the resistance of the material to penetration of the inden-
ter. The resistance to penetration of the indenter is called the
hardness of the material.

The indentation tests fall into three types of indentations:
(i) macroindentations as determined by the Brinell (Meyer) and
Rockwell indenters, (ii) microindentation as determined by the
Berkovich, Knoop and Vickers indenters, and (iii) nanoinden-
tation as determined by the Berkovich indenter.

Correlation equations will be presented for the Vickers mi-
crohardness measurements as a function of the Vickers diagonal
or the penetration depth. It will be shown that the Vickers mi-
crohardness correlation equations for different materials depend on two correlation coefficients which are
closely related to the Brinell hardness. The correlation equations and a mechanical model will be used to
predict the appropriate value for the contact microhardness given the effective joint roughness and mechan-
ical load. The Brinell hardness and the Vickers microhardness are temperature dependent and correlation
equations will be presented for three metals to illustrate this fact.

II. Contact, Gap, Radiation, and Joint Conductances

Steady heat transfer across a joint formed by the static contact of two conforming rough surfaces is given
by the relationship:

Qj = hj Aa ∆Tj (3)
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where ∆Tj is the overall temperature drop across the joint, hj is the joint conductance, and Aa is the
apparent area of the joint. If the microgaps are occupied by a gas which is transparent to radiation, then
the joint conductance consists of three components such that

hj = hc + hg + hr (4)

where hc is the contact conductance, hg is the gap conductance, and hr is the radiation conductance. If the
temperature level of the joint is below 600◦C, the radiation conductance is negligibly small relative to the
contact and gap conductances, and, therefore, the joint conductance is given by

hj = hc + hg (5)

which applies to many joints of interest to the microelectronics industry. If the joint is in an environment
where the gas pressure is much smaller than one atmosphere, then the joint conductance is related to the
contact conductance, and

hj = hc (6)

This simple relation is applicable to many joints of interest to the aerospace industry when radiation is
negligible2.

The contact conductance for the joint formed by two conforming rough surfaces is given by following
general relationship1,4:

hc =
2naks

ψ(ε)
(7)

where n denotes the contact spot density, a is the mean contact spot radius, and the effective thermal
conductivity of the joint is1,4

ks =
2k1k2

k1 + k2
(8)

The thermal conductivities of the contacting asperities are k1 and k2, respectively. The constriction/spreading
resistance parameter for isothermal contact spots is1−4

ψ(ε) = (1 − ε)1.5 (9)

where the relative contact spot size is ε =
√
Ar/Aa and the total real contact area is Ar.

The general relationship for the contact conductance applies to all joints formed by two conforming rough
surfaces whose asperities have Gaussian height distributions with respect to mean planes associated with each
surface shown in Fig. 1. The asperities are also assumed to be randomly distributed in the contact plane. The
contact conductance relation was developed by Cooper, Mikic and Yovanovich3 and its applicable to joints
where the contacting asperities deform (i) elastically, (ii) plastically, or (iii) elastoplastically. The Cooper,
Mikic and Yovanovich model (CMY)3 is based on the plastic deformation of the contacting asperities. This
model has been shown to be applicable to most joints when the appropriate value of the contact microhardness
is used.

The CMY model consists of the following relationships for the microgeometry of the joint1,3,4:

Ar

Aa
=

1
2
erfc

(
λ√
2

)
(10)

n =
1
16

(m
σ

)2 exp(−λ2)
erfc(λ/

√
2)

(11)

a =

√
8
π

( σ
m

)
exp

(
λ2

2

)
erfc

(
λ√
2

)
(12)

na =
1

4
√

2π

(m
σ

)
exp

(
−λ

2

2

)
(13)
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The effective joint roughness parameters are defined as

σ =
√
σ2

1 + σ2
2 m =

√
m2

1 +m2
2 (14)

when the surface asperities heights are Gaussian and they are randomly distributed in the plane of contact.
The RMS surface roughnesses are σ1 and σ2. The mean asperity slopes are m1 and m2. The important
micro-geometric parameter which appears in all relations is the relative mean plane separation which is
defined as

λ =
Y

σ
(15)

where Y is the mean planes separation. This parameter depends on the apparent contact pressure P and
the mode of asperity deformation.

The gap conductance model for the microgaps occupied by a gas was developed by Yovanovich and
co-workers5,7,8. Its given as an integral1,5,7:

hg =
kg

σ

1√
2π

∫ ∞

0

exp
[
−(λ − u)2/2

]

u+M/σ
du =

kg

σ
Ig (16)

where kg is the thermal conductivity of the gas. The dimensionless local gap thickness is defined as u = t/σ.
The complex gas gap rarefaction parameter is defined as1,5,7

M = αβΛ (17)

where

α =
2 − α1

α1
+

2 − α2

α2
(18)

β =
2γ

(γ + 1)Pr
(19)

Λ = Λ0

(
Tg

Tg,0

) (
Pg,0

Pg

)
(20)

The accommodation parameter α depends on the thermal accommodation parameters α1, α2 in a complex
manner1,8. The thermal accommodation coefficients must be determined by experiments for the particular
gas-solid combination1,8.

The gas parameter β depends on the ratio of specific heats γ = cp/cv and the Prandtl number Pr. The
molecular mean free path Λ depends on the reference value Λ0 and the gas temperature Tg and the gas
pressure Pg, as well as the reference gas temperature Tg,0 and reference gas pressure Pg,0.

Negus and Yovanovich7 gave the following correlation equations for the gap integral:

Ig =
fg

λ+M/σ
(21)

In the range 2 ≤ λ ≤ 4:

fg = 1.063 + 0.0471 (4 − λ)1.68 [ln (σ/M )]0.84 for 0.01 ≤ M/σ ≤ 1

fg = 1 + 0.06 (σ/M )0.8 for 1 ≤ M/σ < ∞

The correlation equations have a maximum error of approximately 2%.
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The important micro-geometric parameter λ appears in the contact and gap conductances. In general
this parameter lies in the range: 2 ≤ λ ≤ 4. When the contact pressure is light, e.g., P ≤ 0.27 MPa and the
contacting surfaces are hard metals, then λ will be near 4. On the other hand when the contact pressure is
high, e.g., P ≥ 13.5 MPa, and the contacting surfaces are soft, then λ will be near 2.

To determine the value of λ its necessary to assume a mode of deformation of the contacting asperities
such as plastic deformation and to apply a force balance at the joint to obtain a relationship for λ.

A force balance gives the following relationship:

F = PAa =
N∑

i=1

Hc,iAr,i (22)

where P is the apparent contact pressure, Aa is the apparent or nominal contact area, Hc,i is the microhard-
ness of the ith contact spot whose real area is Ar,i, and there are N microcontacts in the apparent area. We
assume that there is a mean microhardness value such that Hc,i ≡ Hc for all contact spots; therefore,

N∑

i=1

Hc,iAr,i = Hc

N∑

i=1

Ar,i = HcAr (23)

where Ar is the total real contact area. From the force balance and the geometric relation Ar/Aa for
interaction of two Gaussian surfaces, we have

P

Hc
=
Ar

Aa
=

1
2
erfc

(
λ√
2

)
(24)

From the foregoing relation we can write

λ =
√

2 erfc−1

(
2P
Hc

)
(25)

This important relationship will be used to obtain relationships for the dimensionless contact conductance
which is defined as

Cc =
σ

m

hc

ks
= f(λ) =

1
4
√

2π
exp(−λ2/2)

[
1 −

√
1
2erfc(λ/

√
2)

]1.5 (26)

The relationships for Cc and λ were combined and a numerical method were used to obtain numerical values
of Cc for values of P/Hc. The following simple power-law relation was recommended by Yovanovich4:

Cc = 1.25
(
P

Hc

)0.95

(27)

This explicit relationship agrees with the theoretical values to within ±1.5% in the range 2 ≤ λ ≤ 4.75 and
in the range 10−6 ≤ P/Hc ≤ 2.3 × 10−2. Numerical quadrature is required to find values of λ for given
values of P and Hc. The following approximations can be used to calculate λ:
Yovanovich Approximation (1981)

λ = 1.184
[
− ln

(
3.132

P

Hc

)]0.547

Song-Yovanovich Approximation (1988)

λ = 1.363
[
− ln

(
5.589

P

Hc

)]0.5
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Ranges of application of the approximations are

2 ≤ λ ≤ 4.75 and 10−6 ≤ P

Hc
≤ 2 × 10−2

Antonetti Power-Law Approximation (1983)

λ = 1.53
(
P

Hc

)−0.097

can be used to obtain values quickly; however, its less accurate than the other two approximations. It
shows more clearly than the other approximations that λ is a relatively weak function of the relative contact
pressure P/Hc.

The foregoing short reviews of the contact and gap conductances for joints formed by the mechanical
contact of conforming rough surfaces show that the dimensionless parameter P/Hc is very important. Since
the apparent contact P is known, it is necessary to obtain values of the contact microhardness Hc for a given
joint having the effective surface roughness σ/m.

A. Iterative Model for Calculation of Contact Microhardness

The iterative model for calculating the contact microhardness Hc and the relative contact pressure P/Hc is
based on a set of equations and the given joint parameters: (σ/m, c1, c2, P,Hb).

The set of equations are1,4,6:

(i) λ =
√

2 erfc−1

(
2P
Hc

)

(ii) a =
( σ
m

)√
8
π

exp
(
λ2

2

)
erfc

(
λ√
2

)

(iii) dV =
√

2π a

(iv) Hc = c1

(
dV

d0

)c2





(28)

The parameter d0 = 1µm is introduced for convenience. The set of equations is based on the area equivalence
of the Vickers projected area and the contact spot area, therefore, AV = d2

V /2 = Ac = πa2. Also we assume
that Hc = HV .

The iteration process begins with an initial guess for Hc. It has been demonstrated that when the initial
guess is based on the known bulk hardness, i.e.,Hc = Hb, convergence occurs after 2 to 3 iterations depending
on the convergence criterion6.

To avoid the numerical calculation of the inverse complementary error function in the first equation, the
approximation of Yovanovich4 was used to calculate the inverse complementary error function.

B. Explicit Relationship for Relative Contact Pressure

Song8 and Song and Yovanovich9 examined the iterative model and found that when the Song and Yovanovich
approximation for erfc−1(·) is used, the iterative process leads to the following explicit relationship:

P

Hc
=

[
P

1.62c1 (σ/σ0m)c2

]1/(1+0.071c2)

(29)

where σ0 = 1µm. This relationship shows how the important parameter P/Hc depends on the joint param-
eters (σ/m, c1, c2, P ).

In the subsequent sections it will be shown how the contact hardness can be calculated and how it is
related to the macro, micro and nano-hardness. However, before this can be done its important to present
brief reviews of hardness indenters and hardness tests.
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III. Micro and Macro Hardness Indenters

The several micro and macrohardness indenters will be reviewed in this section.
The macrohardness indentation testers are the Brinell (Meyer) and Rockwell, and the microhardness

indenters are the Berkovich, Knoop and Vickers.
There are 6 types of hardness indentation tests used to determine the macrohardness and microhardness

of materials such a metals, ceramics, and plastics. The indenters are much harder than the specimen, and
they are smooth balls, cones with hemispherical tips, and pyramidal having three or four faces.

A brief description of the various types of indenters are given below. More details regarding the nano,
micro, and macro-indenters can be found in the texts10−14.

A. Brinell and Meyer Macrohardness

The Brinell and Meyer macrohardness are determine by the same indentation test. A hard smooth ball of
diameter D(mm) is pressed into a smooth flat surface under a known load F (N) for duration of 30 to 60
seconds depending on the whether the metal is hard or soft as shown in Fig. 2. After removal of the ball, the
diameter of the indentation is measured by means of an optical microscope. The diameter of the indentation
d(mm) is the average value of 2 measurements, i.e., d = (d1 + d2)/2 where d1 and d2 are the measured
diameters which are perpendicular to each other.

Figure 2. Brinell and Vickers Indenters and
Indentations.

Brinell Hardness Number. The Brinell hardness number
(BHN) is expressed as the load divided by the actual area of
the indentation. Therefore,

BHN =
2F

πD
(
D −

√
D2 − d2

) =
F

πDt
(30)

where the penetration depth, defined as the distance from the
original surface to the maximum indentation depth, is

t =
D −

√
D2 − d2

2
(31)

The relative indentation size is recommended to lie in the
range: d/D = 0.25 − 0.6. If the load is given in kgf
and the indentation diameter is given in mm, then the
Brinell hardness has units of kgf/mm2. These are the
units used in handbooks and older texts. Today, its more
common to give the Brinell hardness in units of MPa or
GPa. In this paper the Brinell hardness will be denoted as
HB.

Meyer Hardness Number. The Meyer hardness number
(MHN) is based on the same indentation test, however, the
Meyer hardness number is expressed as the indentation load
divided by the projected area of the indentation. Therefore,

MHN =
4F
πd2

= Pm (32)

where Pm is the mean contact pressure. The Meyer hardness is said to be a true representation of the
hardness of the material. In this paper the Meyer hardness will be denoted as HM .
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The Brinell and Meyer hardness are related as

HB

HM
=

(d/D)2

2
[
1 −

√
1 − (d/D)2)

] (33)

Table 1 shows the relationship between the numerical values of the Brinell and Meyer hardnesses for typical
values of d/D which is sometimes called the contact strain.

The difference between the Brinell hardness and the Meyer hardness is about 10% at the largest recom-
mended value of d/D.

The Brinell hardness number is favored by certain engineers because there is an empirical relationship
between it and the ultimate tensile strength of the material. The Meyer hardness which is based on the
projected area is preferable since it gives the mean pressure beneath the indenter which opposes the applied
force.

B. Rockwell Macrohardness

The Rockwell hardness test is a static indentation test similar to the Brinell indentation test. It differs in
that it measures the permanent increase in the indentation depth from the depth reached under an initial
load of 98.1 N, due to the application of an additional load. Measurement is made after recovery which takes
place following the removal of the additional load. The Rockwell hardness number is a direct reading (in
units of 0.002 mm) from the dial gauge which is attached to the Rockwell machine while the initial minor
load is still imposed.

According to the material being tested, the indenter may be a 120◦ diamond cone with a blended spherical
apex of 0.2 mm radius or a steel ball indenter. The steel ball indenter is normally 1.588 mm in diameter,
however, larger diameters such as 3.175, 6.350, or 12.7 mm may be used for soft materials.

The Rockwell hardness testers are constructed to apply a fixed minor load of 98.1 N which is used to
establish the measurement datum. This is followed by an additional load, within 2-8 seconds, which may be
0.49, 0.88 or 1.37 kN. The combination of three loads and five indenters gives fifteen conditions of test; each
has its own hardness scale.

There is no Rockwell hardness number value designated by a number alone because it is necessary to
specify which indenter and load have been used in an indentation test. Therefore, a prefix letter is employed
to designate the scale and test condition. Of the several scales available, the B and C scales are the most
widely used. For the B scale, a 0.88 kN additional load with a 1.588 mm diameter steel ball indenter is used.
For the C scale, a 1.37 kN additional load a conical indenter is used.

The Rockwell scales are divided into 100 divisions, each equivalent to 0.002 mm of recovered indentation.
Since the scales are reversed, the number is higher the harder the material, as shown by the following relations
which define the Rockwell B and C hardness numbers.

Table 1. Ratio of Brinell to Meyer hardness versus contact strain

d/D HB/HM

0.20 0.9899
0.30 0.9770
0.40 0.9583
0.50 0.9330
0.60 0.9000
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Rockwell B = RB = 130 − depth of penetration (mm)
0.002

Rockwell C = RC = 130− depth of penetration (mm)
0.002





(34)

The Brinell (Meyer) hardness tests and the Rockwell tests give essentially identical macrohardness values
which are constant with respect to the indentation load. The hardness values correspond to the resistance
of the bulk material to the penetration of the indenter. Brinell hardness values are frequently reported in
materials handbooks.

C. Knoop Microhardness Indenter and Test

The Knoop (HK) hardness indenter and test procedure was developed at the National Bureau of Standards
(now NIST) in 1939. The indenter used is a rhombic-based pyramidal diamond that produces an elongated
diamond shaped indent. The angles from the opposite faces of a Knoop indenter are 172◦30′ and 130◦.

The Knoop indenter is a diamond ground to pyramidal form that produces a diamond shaped indentation
having approximate ratio between long and short diagonals of 7 to 1. The depth of indentation is about
1/30 of the diagonal length.

The Knoop indenter is particularly useful for the study of highly brittle materials due to the small depth
of penetration for a given indenter load. Also, due to the unequal lengths of the diagonals, it is very useful
for investigating anisotropy of the surface of the specimen.

Knoop tests are mainly done at test forces from 10g to 1000g, so a high powered microscope is necessary
to measure the indent size. Because of this, Knoop tests have mainly been known as microhardness tests.
The newer standards more accurately use the term microindentation tests. The magnifications required
to measure Knoop indents dictate a highly polished test surface. To achieve this surface, the samples are
normally mounted and metallurgically polished, therefore Knoop is almost always a destructive test.

The indenter is pressed into the polished surface of a sample by an accurately controlled test force which
is maintained for a specific dwell time, normally 10 - 15 seconds. After the dwell time is complete, the
indenter is removed leaving an elongated diamond shaped indent in the sample. The size of the indent is
determined optically by measuring the longest diagonal d of the diamond shaped indent. The length of the
smaller diagonal is d/7. The Knoop hardness number KHN is defined as the ratio of the test force divided
by the projected area of the indent. The Knoop hardness number is calculated from:

KHN =
2F

d2

[
cot

172.5◦

2
tan

130◦

2

] = 14.240
F

d2
(35)

where the units of d are mm and the load is kgf. The Knoop microhardness will be denoted as HK . The
conventional units are kgf/mm2. Typical values of HK are in the range from 100 to 1000 kgf/mm2. Table 2
lists nominal values for 4 materials.

Table 2. Values of Knoop hardness number for selected materials

Material HK

Gold foil 69
Quartz 820
Silicon carbide 2480
Diamond 8000
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D. Vickers Microhardness Indenter and Test

In the Vickers microhardness test, a diamond indenter, in the form of a square-based pyramid with an angle
of 136◦ between the opposite faces at the vertex, is pressed into the polished surface of the test specimen
using a prescribed force F as shown in Fig. 2. After the force has been removed, the diagonal lengths of the
indentation d1 and d2 are measured with an optical microscope. The time for the initial application of the
force is 2 to 8 seconds, and the test force is maintained for 10 to 15 seconds. The applied loads vary from 1
to 120 kgf, and the standard loads are 5, 10, 20, 30, 50, 100, and 120 kgf

The Vickers hardness number VHN is defined as the test force divided by the actual area of the residual
indent. Its given by

VHN =
2F
d2

sin
136◦

2
= 1.854

F

d2
(36)

where the mean diagonal is d = (d1 + d2)/2 and its units are mm. The unit of load is kgf. The Vickers
hardness number is smaller than the mean contact pressure by about 7%.

The Vickers microhardness will be denoted as HV . The units of Vickers microhardness are frequently
reported as kgf/mm2. There is now a trend towards reporting Vickers microhardness in SI units (MPa or
GPa). To convert Vickers microhardness values from kgf/mm2 to MPa multiply by 9.807.

The Vickers microhardness depends on the load applied to the indenter. As the load increases, the
diagonal and corresponding penetration depth increase. The Vickers microhardness can be related to the
diagonal dV or the penetration depth t which are related as dV = 7t. The Vickers contact area and the
penetration depth are related as AV = 24.5 t2.

The Vickers microhardness test is reliable for measuring the microhardness of metals, polymers, and
ceramics.

E. Berkovich Micro and Nanohardness Indenter and Nanohardness Tests

The Berkovich diamond indenter is a triangular pyramid with a true point since only three sides have to
meet. The angle between the vertical axis and each of the faces is 65◦. The Berkovich diamonds are cut
with an angle of 142◦ between any two of the planes along the line so that the surface areas of indents are
the same as the Vickers indent for the same depth of penetration. This means that isotropic microhardness
values are the same for a given material when its indented by the Berkovich and the Vickers indenters.

The Berkovich indenter is used to study the micro and submicron indentations of various materials.
Equipment for this purpose consists of an instrumented loading device that records the indenter load P in
mN and indenter displacements h in micrometers or nanometers. Estimates of the elastic modulus E and
microhardness H of the specimen are obtained from the load versus penetration measurements.

Rather than the direct measurements of the size of residual impressions, which require optical micro-
scopes, contact areas are calculated from the depth measurements together with a knowledge of the indenter
shape. This is in contrast to the procedures employed for the macro indentation tests, where the lateral
dimensions (diagonals for the Vickers and Knoop tests, and diameter for the Brinell and Rockwell tests),
rather than the depth of penetration of the residual impression are used to calculate the microhardness and
the macrohardness.

IV. Micro and Macrohardness Tests and Correlations

The Vickers, Brinell and Rockwell B micro and macrohardness test results and correlation equations for
SS 304, Ni 200, Zr-4, and Zr-Nb will be presented in this section. The data are given in several papers6,15−17

and the dissertation of Hegazy19. Figures 3 and 4 show the Vickers, Brinell and Rockwell B results for SS
304 and Ni 200 respectively. In order to show the micro and macrohardness values on the same plot, its
necessary to plot hardness versus the penetration depth t which varies from about t = 1µm to approximately
t = 800µm. The largest penetration depths of about 800µm correspond to the Brinell tests which were based
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on a 10 mm diameter steel ball forced into the surface of the specimens under a 29.43 kN load. In the Rockwell
B tests a 1.59 mm diameter steel ball was forced into the surface of the specimens under a 981 N load. The
penetration depths were about 100µm.

Figure 3. Vickers, Brinell, Rockwell Hard-
ness Versus Indentation Depths for SS 304.

The Brinell and Rockwell B macrohardness values denoted
as Hb for SS 304 were identical, Hb = 150 kg/mm2 (Fig. 3).
The Brinell and Rockwell B macrohardness values for Ni 200
were identical, Hb = 170 kg/mm2 (Fig. 4).

The Vickers microhardness values H for both metals are
dependent on the penetration depth t as shown in Figs. 3 and
4. The points shown in Fig. 3 represent the average value of 5
test values at each load.

The maximum values H = Hmax were measured at the
minimum depths t = t0, and the smallest values H = Hmin

were measured at the maximum test depths t = tn. The Vick-
ers microhardness values were correlated and the extrapolated
curve intersected the bulk values Hb at the penetration depth
tb. The Vickers microhardness values were correlated with the
following general set of equations6,15−17:

Figure 4. Vickers, Brinell, Rockwell Hard-
ness Versus Indentation Depths for Ni 200.

H = Hmax = constant t ≤ t0

H = H(t) = c1t
c2 + c3 t0 ≤ t ≤ tn

H = Hb = constant t ≥ tb





(37)

The correlation coefficients are c1, c2 and c3. The values for
SS 304 are

c1 = 3049.6 c2 = −0.024 c3 = −2649.8 (38)

The maximum and minimum hardness values and the corre-
sponding penetration depths are6,15−17

Hmax = 385 kg/mm2 t0 = 1.2µm

Hb = 150 kg/mm2 tb = 34µm



 (39)

The values for Ni 200 are

c1 = 377.27 c2 = −0.274 c3 = 7.79 (40)

The maximum and minimum hardness values and the cor-
responding penetration depths are

Hmax = 362.3 kg/mm2 t0 = 1.24µm

Hb = 170.4 kg/mm2 tb = 21.56µm



 (41)
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In order to implement the correlation equations its necessary to convert the penetration depths to
microns from µm. For example, if the Vickers penetration depth is 5 × 10−6 m for both metals, then
t = 5 × 10−6/10−6 = 5 micron, and the microhardness values are H = 284.3 kg/mm2 for SS 304 and
H = 250.5 kg/mm2 for Ni 200.

A model is required to calculate the contact microhardness given the correlation equation and the effective
surface roughness σ/m and the apparent contact pressure P . Several models were presented6,15−17. A simple
direct method for calculation of the effective contact microhardness will be presented next.

A. Direct Approximate Method

The Direct Approximate Method (DAM) is based on the observation that the geometric parameters of the
CMY model change slowly as the apparent contact pressure is varied over a wide range. This model is based
on the equivalence of the Vickers indentation area AV = d2

V /2 = 49t2/2 and the mean contact spot area
Ac = πa2 where a is the mean contact spot radius. The area equivalence leads to the following relationship
between the indentation depth and the contact spot radius:

t =
(
πa2

24.5

)1/2

= 0.358 a (42)

The contact microhardness can be related to the mean contact spot radius as

Hc = c1 (0.358 a)c2 + c3 (43)

It was shown by Yovanovich4 that the following simple explicit relationship:

a = 0.99
( σ
m

)[
− ln

(
3.132

P

H

)]−0.547

(44)

can be used to calculate the mean contact spot radius when σ/m, P and H are known.
For a particular metal such as Ni 200 we have after substitution the implicit relationship:

H = 501.3
(m
σ

)0.274
[
− ln

(
3.132

P

H

)]0.150

(45)

where the units of σ/m must be microns, and the units of P and H must be consistent. Since the unknown
H appears on both sides, a numerical method to find its root can be used, or an iterative approach can be
employed to calculate the value of H beginning with an initial guess. Its found that starting with the lowest
value H = Hb, only 2 to 3 iterations are required to calculate an accurate value of H.

The following explicit relationship based on H = Hb substituted on the right hand side gives approximate
values for the effective contact microhardness which is denoted as Hc:

Hc = 501.3
(m
σ

)0.274
[
− ln

(
3.132

P

Hb

)]0.150

(46)

This relationship shows clearly how the contact microhardness is related to the effective surface roughness
of the joint, the apparent contact pressure, and the bulk hardness.

For a given metal the contact microhardness decreases with increasing surface roughness and increasing
contact pressure.

Two examples will be given to illustrate the use of the correlation equation. For a Ni 200 joint where
σ/m = 1.21/0.139 = 8.71 microns, Pmin = 622 kg/mm2, Pmax = 3, 510 kg/mm2, and Hb = 170.4 kg/mm2.
The mean contact pressure is Pm = (Pmin + Pmax)/2 = 2, 066 kg/mm2.

Substitution of these values in the correlation equation gives the contact microhardness value: Hc =
366.0 kg/mm2 which is 2.15 times greater than the bulk hardness.
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For the second example the contact parameters are σ/m = 8.48/0.344 = 24.65 microns, Pmin = 571 kg/mm2,
Pmax = 3, 433 kg/mm2, and Hb = 170.4 kg/mm2. The mean contact pressure is Pm = (Pmin + Pmax)/2 =
2, 002 kg/mm2.

Substitution of these values in the correlation equation gives the contact microhardness value: Hc =
277.3 kg/mm2 which is 1.63 times greater than the bulk hardness.

B. Vickers Microhardness Correlation Equations

The material in this section are obtained from the work of Hegazy19. The development of Vickers microhard-
ness correlation equations are based on Vickers microhardness and Brinell hardness measurements. Seven
loads from 0.147 N to 4.9 N were used in the Vickers microhardness measurements. For each load 5 inden-
tations were used to calculate the value of HV . Each value of HV is based on the average of the measured
diagonals for a particular load, i.e.,

HV =
1.854F
d2

V

GPa (47)

where the applied load is F in newtons, and

dV =
(d1 + d2)

2
(48)

and d1 and d2 are the measured diagonals in µm.
For any load the maximum percent difference in the calculated values of HV was less than 5 %. The

Vickers microhardness values HV in GPa for 4 metals: Ni 200, SS 304, Zr-4 and Zr-Nb are plotted against
the average values of the Vickers indentation diagonal dV in µm as shown in Figs. 5 and 6.

Figure 5. Vickers, Brinell, Rockwell Hard-
ness Versus Indentation Depths for Four
Metals and Alloys (From Hegazy, 1985).

The Vickers microhardness values are correlated by the
power-law relation:

HV = c1

(
dV

d0

)c2

with d0 = 1µm (49)

The parameter d0 was introduced to make the ratio dV /d0 di-
mensionless. The Vickers microhardness correlation coefficients
are c1 and c2. The units of HV and c1 are GPa, and the size
index c2 is dimensionless. The correlation equation is based on
the average Vickers diagonal dV . The correlation coefficient c1
is the Vickers microhardness when dV = d0.

The bulk or material hardness which is denoted as Hm was
determined by Brinell and Rockwell B indentation tests which
gave the same value although the indentations depths are sig-
nificantly different as seen in Fig. 5.

The values of Hm, c1 and c2 are given in Table 2 for the
four metals.

The maximum and RMS percent differences between the measured values and the predicted values are
given. Except for the maximum percent difference of 10.2 % for Zr-Nb, the maximum percent differences are
below 5 %, and the RMS percent differences are below 3 %.

The average value of c2 is −0.260. Since the variation in the values of c2 is relatively small, this value was
selected for the 4 metals to develop an alternative Vickers microhardness correlation equation of the form:

HV = ξ

(
dV

d0

)η

with d0 = 1µm (50)

where η = −0.260, fixed for all metals. The Vickers microhardness values were used to find values for the
correlation coefficients ξ. These values are given in Table 4.
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Table 3. Vickers correlation coefficients for four metals

Metal Hm(GPa) c1(GPa) c2 Max % Diff. RMS% Diff.
Ni 200 1.668 6.304 −0.264 4.8 1.8
SS 304 1.472 6.271 −0.229 4.2 1.4
Zr-4 1.913 5.677 −0.278 3.4 1.7
Zr-Nb 1.727 5.884 −0.267 10.2 2.7

Figure 6. Vickers Hardness Versus Inden-
tation Depths for Four Metals and Alloys
(From Hegazy, 1985).

The alternative correlation equation with the fixed value of
η = −0.260 and the corresponding values of ξ have maximum
and RMS percent differences which are comparable with the
original correlation equation. All values of HV /ξ when plotted
against dV fall on a single curve as seen in Fig. 7.

This confirms that there is a close relationship between HV

and ξ for the 4 metals. The values of ξ when plotted against
values of Hm fall on a straight line as shown in Fig. 8. The
following correlation equation for ξ versus Hm is obtained

ξ = 12.04− 3.49Hm for 1.472 ≤ Hm ≤ 1.913 (51)

The units of ξ and Hm are GPa. The comparisons between
the actual and predicted values of ξ are given in Table 4.

The RMS percent difference is about 2.3 %.
A new general Vickers microhardness correlation equation for the 4 metals and any other metal whose

bulk hardness lies in the range: 1.472 ≤ Hm ≤ 1.913 is

HV = (12.04− 3.49Hm)
(
dV

d0

)−0.260

GPa (52)

where the units of Hm must be GPa.

V. Correlation Equations for Vickers Coefficients

Table 4. Modified Vickers correlation coefficients for four metals

Metal Hm(GPa) ξ(GPa) η Max % Diff. RMS% Diff.
Ni 200 1.668 6.217 −0.260 5.2 1.8
SS 304 1.472 6.906 −0.260 5.9 2.4
Zr-4 1.913 5.367 −0.260 3.9 1.8
Zr-Nb 1.727 5.750 −0.260 9.7 2.7
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Table 5. Comparisons of modified correlations with Vickers hardness values

Metal Hm(GPa) ξ(GPa) Corr. Eq. % Diff.
Ni 200 1.668 6.217 6.219 0.03
SS 304 1.472 6.906 6.903 −0.04
Zr-4 1.913 5.367 5.364 −0.06
Zr-Nb 1.727 5.750 6.013 4.60

Figure 7. Normalized Vickers Microhard-
ness Versus Vickers Diagonals four Four
Metals and Alloys. (From Hegazy, 1985)

When Vickers indentation tests were done on harder metals
and alloys, it was observed that the simple general correlation
equation developed for the 4 metals whose bulk hardness values
lie in the range: (1.33 ≤ Hm ≤ 1.91) GPa predicts values ofHV

which have large errors.
When a Titanium alloy withHB = 3.07 GPa, and untreated

and heat treated tool steel with Brinell hardness values in the
range: (1.98 ≤ HB ≤ 7.57) GPa, the simple general correla-
tion equation gives poor agreement with the measured Vick-
ers microhardness measurements. Sridhar21 conducted exten-
sive Vickers microhardness tests, and Brinell and Rockwell C
macrohardness tests, and he found new relationships between
the Vickers correlation coefficients c1 and c2 and the bulk hard-
ness HB. The development of the new correlation equations are
given in21,23; only the final results will be presented.

For Brinell hardness values in the range 1.30− 7.60 GPa, a
least-squares cubic fit was used to obtain correlation equations
for c1 and c2. The correlation equation for c1 is21,23

c1
HBGM

= 4.0− 5.77Z + 4.0Z2 − 0.61Z3 (53)

with
Z =

HB

HBGM

where HBGM = 3.178 GPa which is the geometric mean of the minimum and maximum values of HB for
the test materials.

The correlation equation for c2 is21,23

c2 = −0.57 +
Z

1.22
− Z2

2.42
+

Z3

16.58
(54)

The maximum percent difference and RMS % difference between the c1 values and the correlation equation
are −11.0% and 5.3% respectively. The maximum percent difference and RMS % difference between the c2
values and correlation equation are −41.5% and 20.8% respectively. The relatively large percent differences
between the c2 values and the correlation values are less important than the good agreement between the
c1 values and the correlation equation. The values of c2 for the very hard heat treated tool steel lie in the
range: [−0.040 to − 0.129].
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Figure 8. Plot of Vickers Coefficients Versus
Macrohardness. (From Hegazy, 1985).

An alternative correlation equation for c2 was given21,23:

c2 = −0.370 + 0.442
HB

c1
(55)

The percent difference and RMS percent difference between all
data and the correlation equation are 25.8% and 10.9% respec-
tively.

The Brinell hardness tests were performed with a standard
steel ball for materials with hardness less than 4.40 GPa and
with a carbide ball with hardness greater than 4.40 GPa as
recommended by ASTM E10. A load of 3000 kgf was used to
make Brinell hardness tests so that included the entire range
(1.30− 7.60) GPa

Rockwell C hardness tests were also performed on the heat
treated tool steel specimens to complement the Brinell hardness
tests. The Brinell hardness values and the Rockwell C hard-
ness values in the range (15 ≤ HRC ≤ 65) were in good agree-
ment. The following correlation equation between the Brinell
hardness number and the Rockwell C hardness number was
obtained using a 3rd order polynomial:

BHN = 43.7 + 10.92 HRC− (HRC)2

5.18
+

(HRC)3

340.26
(56)

which is valid for (20 ≤ HRC ≤ 65). This correlation equation is a useful relationship between Brinell
hardness number (BHN) and Rockwell C hardness number (HRC) for tool steel (01). Its not possible to
perform accurate Rockwell C hardness tests below HRC = 20.

VI. Temperature Effects on Vickers and Brinell Hardness

Thermophysical properties of all materials depend on temperature level. Since the temperature level of
most joints is above room temperature, its important to conduct Vickers microhardness and Brinell hardness
test at elevated temperatures.

A. Temperature Effects on Yield Strength and Vickers Microhardness of SS 304L

The effects of temperature level on the values of yield strength Sy and Vickers microhardness HV are given20

in Table 6.

Table 6. Temperature effects on yield strength and Vickers hardness

T (◦C) Sy(MPa) Sy(T )/Sy(25) HV (MPa) HV (T )/HV (25)
25 274 1.00 1570 1.00
200 223 0.81 1180 0.75
400 198 0.72 1090 0.69
600 157 0.57 863 0.55
800 78.9 0.29 392 0.25
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The values of yield strength and Vickers microhardness are strongly dependent on temperature for tem-
peratures from (200 to 800)◦C. The temperature dependence of Sy and HV with temperature are similar.

B. Temperature Effect on Brinell Hardness

Temperature effects on the Brinell hardness of SS 304, Ni 200 and Al 6061 T6 were found by Nho20. The load
was 1500 kg and the ball diameter was 10 mm for the Brinell test on SS 304 and Ni 200. Five measurements
of the indentation diameter were made at the reported temperatures. The average values for SS 304 are
given in Table 7.

Table 7. Temperature effect on Brinell hardness of SS 304

T (◦C) d(mm) HB(MPa) HB(T )/HB(23.8)
23.8 3.68 1335 1.00
55.6 3.79 1256 0.94
89.9 3.89 1189 0.89
123.0 4.00 1122 0.84
152.4 4.07 1082 0.81
186.1 4.15 1039 0.78

The correlation equation is
HB(T )
HB(23.8)

= exp [CT (T − 23.8)] (57)

where the correlation coefficient is CT = −1.51× 10−3 C−1.
The average values for Ni 200 are given in Table 8.

Table 8. Temperature effect on Brinell hardness of Ni 200

T (◦C) d(mm) HB(MPa) HB(T )/HB(23.1)
23.1 3.51 1472 1.00
58.5 3.62 1381 0.94
95.1 3.70 1320 0.90
121.8 3.80 1249 0.85
159.0 3.91 1177 0.80
209.3 4.17 1028 0.70

The correlation equation for Ni 200 is

HB(T )
HB(23.1)

= exp [CT (T − 23.1)] (58)

where the correlation coefficient is CT = −1.86× 10−3 C−1.
For the temperature tests for Al 6061 T6 the load was 500 kg and the ball diameter was 10 mm. Five

measurements of the indentation diameter were made at the reported temperatures. The average values for
Al 6061 T6 are given in Table 9. The correlation equation is
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Table 9. Temperature effect on Brinell hardness of Al 6061 T-6

T (◦C) d(mm) HB(MPa) HB(T )/HB(22.3)
22.3 2.59 915 1.00
48.9 2.61 901 0.98
71.1 2.64 880 0.96
102.3 2.68 854 0.93
124.3 2.72 828 0.91
140.8 2.77 798 0.87
164.3 2.81 775 0.85
195.6 2.86 748 0.82

HB(T )
HB(22.3)

= exp [CT (T − 22.3)] (59)

where the correlation coefficient is CT = −1.20× 10−3 C−1.

C. Temperature Effect on Vickers Microhardness and Correlation Coefficients

The hot Vickers microhardness tests and correlations are from Nho20. He conducted tests with Ni 200, SS
304, and Al 6061-T6. He obtained indentation data from three tests and reported the average values. Six
loads were used: (F = 25, 50, 100, 200,300,500) kg. Tests were conducted at room temperature and 4 higher
temperature levels.

The Vickers microhardness results were correlated with the power-law relation:

HV = c1

(
dV

d0

)c2

with d0 = 1µm (60)

For the three metals tested the correlation coefficient c1(T ) was dependent on the test temperature while
the size index c2 was independent of the temperature. For Ni 200 the values of c2 lie in the narrow range
of −0.209 to −0.237. The average value c2 = −0.226 was selected and a new set of values for c1(T ) were
calculated.

For SS 304 the values of c2 lie in the narrow range of −0.265 to −0.289. The average value c2 = −0.279
was selected and a new set of values for c1(T ) were calculated.

For Al 6061 T-6 the values of c2 lie in the narrow range of −0.00643 to −0.0117. The average value
c2 = −0.0079 was selected and a new set of values for c1(T ) were calculated.

The values of c1(T ) for each metal were correlated and the following general relationship was given

c1(T )
c1(Trm)

= exp [CT (T − Trm)] 25 ≤ T ≤ Tmax (61)

The correlation parameters c1(Trm), CT , and Tmax are given in Table 10. The room temperatures for the
Vickers microhardness tests for Ni 200, SS 304, and Al 6061 T-6 were Trm = 22.9, 25.2, 23.7◦C, respectively.

For Ni 200 with c2 = −0.226 the re-correlated values are listed in Table 11. For SS 304 with c2 = −0.279
the re-correlated values are listed in Table 12. For Al 6061 T-6 with c2 = −0.0079 the re-correlated values
are listed in Table 13.
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Table 10. Temperature coefficients for Brinell hardness of three metals

Metal c1(Trm)(MPa) 103CT (C−1) Tmax(◦C)
Ni 200 6636 −1.372 186
SS 304 7339 −1.675 190
Al 6061 T-6 1123 −1.190 183

Table 11. Temperature effect on coefficients for Ni 200

T(◦C) c1(MPa) c1(T )/c1(Trm) Max.%diff.
22.9 6636 1.00 +2.6

48.4− 45.9 6282 0.95 −2.7
95.6− 82.3 6115 0.92 −2.3

156.5− 138.0 5613 0.85 −2.5
185.9− 179.7 5258 0.79 −2.9

Table 12. Temperature effect on coefficients for SS 304

T(◦C) c1(MPa) c1(T )/c1(Trm) Max.%diff.
25.2 7339 1.00 −1.5

61.6− 54.3 6716 0.92 −2.7
114.3− 92.8 6321 0.86 −2.9
150.8− 146.1 5898 0.80 +2.3
197.2− 182.4 5495 0.75 +2.7

Table 13. Temperature effect on coefficients for Al 6061 T-6

T(◦C) c1(MPa) c1(T )/c1(Trm) Max.%diff.
23.7 1123 1.00 +1.8

52.3− 48.1 1104 0.98 −1.8
92.4− 86.4 1072 0.95 −1.4

157.0− 156.4 1013 0.90 +1.8
183.0− 177.9 909 0.81 −1.8
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VII. Nano-Indentation Tests

A comprehensive review of nanoindentation tests and nanohardness is beyond the scope of this paper.
Therefore, a relatively short review of the important features of nanoindentation tests will be presented.
Details are available in the text14 and in a few papers24−27.

The indenter of choice is the Berkovich (three-sided) indenter, although the Vickers indenter has been
used.

Figure 9. Typical Loading and Unloading
Curves for Nanoindentation Tests. (From
Oliver and Pharr, 1992).

As the indenter is slowly forced into the surface of the spec-
imen, both elastic and plastic deformation processes occur, and
a contact area is produced that conforms to the shape of the
indenter. The displacement h and the load P are continuously
monitored until the maximum load Pmax is reached and the
corresponding penetration depth is hmax. As the indenter is
slowly withdrawn, only the elastic portion of the displacement
is recovered. The unloading load and displacement are continu-
ously monitored until the load is zero and the final or residual
penetration depth hf measured. The loading and unloading
curves are shown schematically in Fig. 9.

The load range is typically from zero to Pmax = 200 mN and
the penetration depth is from zero to hmax = 1000 nm. Fig-
ure 10 shows unloading nanoindentation curves for 6 different
materials25. The horizontal axis is the relative displacement
(h − hf ) which shows clearly the different unloading trends.
The Aluminum and Tungsten unloading curves are very simi-
lar.

The slope of the upper portion of the unloading curve is
denoted as S = dP/dh as shown in Fig. 1124. The parameter
S is called the elastic contact stiffness14,24−27. The elastic modulus E and the nano or microhardness H
are derived from these quantities by a set of relationships based on elasticity theory. Figure 11 also shows
the contact penetration depth hc for an ideal circular punch where ε = 1, and the contact depth for the
Berkovich indenter with ε = 0.72.

Figure 10. Final Unloading Curves Versus
Reduced Displacements for Six Materials.
(From Oliver and Pharr, 1992).

The fundamental relationships from which H and E are
determined are:

H =
P

A
(62)

where P is the load and A is the projected contact area at that
load, and

Er =
√
π

2β
S√
A

(63)

where Er is the reduced elastic modulus of the contact and
β is a constant that depends on the geometry of the indenter.
The reduced modulus is defined as

1
Er

=
1 − ν2

E
+

1 − ν2
i

Ei
(64)

where E and ν are the elastic modulus and Poisson’s ratio of the test specimen, and Ei and νi are the
elastic modulus and Poisson’s ratio of the indenter.
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The reduced modulus is used to account for the fact that elastic displacements occur in the specimen
and the indenter. For a diamond indenter the values Ei = 1140 GPa and νi = 0.07 are frequently used.

The reduced modulus requires the Poisson’s ratio of the specimen which is unknown. However, the value
ν = 0.25 produces a 5% uncertainty in the calculated value of E for most materials.

Figure 11. Schematic of Loading and Un-
loading Curves Versus Displacements Show-
ing Quantities Used in Analysis. (From
Oliver and Pharr, 1992) .

The equation for the reduced elastic modulus is based on
the classical problem of the axisymmetric contact of a smooth,
rigid, circular punch with an isotropic elastic halfspace whose
elastic properties E and ν are constants. For this type of in-
denter the geometric parameter value is β = 1. However, it
has been shown that the equation can be applied to indenters
whose geometry is not axisymmetric, provided appropriate val-
ues of β are used. For indenters with square cross sections such
as the Vickers pyramid, β = 1.01, and for the triangular cross
section such as the Berkovich pyramid, β = 1.034.

In order to implement the method to calculate H and E ac-
curately from the indentation load-displacement data, one must
have an accurate measurement of the elastic contact stiffness
S and the projected contact area A under the load P .

The widely used method of establishing the contact area
was proposed by Oliver and Pharr24 which expands on the
ideas by others14,25−27. The first step of the analysis procedure
consists in fitting the unloading part of the load-displacement
data to the power-law relation derived from the elastic contact
theory:

P = B(h − hf )m (65)

where B andm are empirically determined fitting parameters, and hf is the final displacement after complete
unloading. Its also determined from the curve fit.

The second step in the analysis consists of finding the contact stiffness S by differentiating the unloading
curve fit, and evaluating the result at the maximum depth of penetration, h = hmax. This gives

S =
(
dP

dh

)

h=hmax

= Bm(hmax − hf )m−1 (66)

The third step in the procedure is to determine the contact depth hc which for elastic contact is smaller
than the total depth of penetration. The contact depth is estimated according to24

hc = hmax − ε
Pmax

S
(67)

where ε is another constant that depends on the indenter geometry. This geometric parameter has the value
ε = 0.75 for spherical indenters, and ε = 0.72 for conical indenters. Experiments with Berkovich indenters
(three-sided pyramidal indenters) have shown that ε = 0.75 works well even when there is elastic-plastic
deformation during unloading. It should be noted that the correction for hc should be used with some
caution because it is not valid in the case of material pile-up around an indent. Therefore inspection of the
residual impression using a scanning electron microscope (SEM) or an atomic force microscope (AFM) is
useful.

If we assume that the Berkovich indenter is ideal, then the relation

A = 3
√

3 tan2 65.3◦ h2
c

= 24.5h2
c



 (68)

is valid, and fitting the upper 25% to 50% of the unloading curve is sufficient.

23 of 28

American Institute of Aeronautics and Astronautics



If the indenter tip is blunted or it has other defects, then the following procedure is recommended.
In the last step in the analysis the projected contact area is calculated by evaluating an empirically

determined indenter area function A = f(h) at the contact depth hc such that

A = f(hc) (69)

The area function A = f(hc) is also called the shape function or tip function because it relates the cross-
sectional area of the indenter A to the distance hc from its tip.

A general polynomial form is used24

A = 24.5h2
c +

n∑

i=1

Ci h
1/2i

c (70)

The leading term of the polynomial fit corresponds to the ideal Berkovich indenter, and the remaining terms
account for deviations from the ideal geometry due to indenter tip rounding. The number of terms is chosen
to give a good fit over the entire range of depths as assessed by comparing a log-log plot of the fit with the
data. Because the data are often obtained over more than one order of magnitude in depth, a weighted fitting
procedure should be used to assure that data from all depths have equal importance. The fitting parameters
Ci can be obtained by performing nanoindentation tests on materials with known elastic modulus.

The procedure described above is essentially the one used by many researchers to obtain values of the
elastic modulus E and the nanohardness H of many different materials. It is also used to determine these
important physical properties of thin films and thin films bonded to substrates. The procedure continues
to be modified for different applications. The normalized unloading curves for the 6 materials are shown
in Fig. 1224. The procedure given above was used to obtain H and E for 6 materials. The power-law fit
correlation coefficients24 are listed in Table 14.

Table 14. Parameter values for power-law fits of unloading curve

Material B (mN/nmm) m
Aluminum 0.2650 1.38
Fused silica 0.0500 1.25
Quartz 0.0215 1.43
Sapphire 0.0435 1.47
Soda-lime glass 0.0279 1.37
Tungsten 0.141 1.51

The good agreement between the calculated values of the contact area and the correlation equation is
shown in Fig. 1324. Results for 3 materials are listed below. The values were obtained digitizing the values
given Tables 15-17. The values for the first load were observed to lie below the values for the second load.
Therefore, the digitized values were normalized with the second load values to show the trends of the data
as the load increases. The values of hardness and elastic modulus for all materials show a definite size effect.

VIII. Summary and Conclusions

A brief review of the contact, gap and joint conductances for joints formed by the mechanical contact of
conforming rough surfaces was presented. It was shown that the contact and gap conductances are complex
parameters which depend on the effective surface roughness of the joint, the thermal conductivities of the
contacting asperities and the gas in the microgaps, and the relative mean plane separation which was shown
to depend on the apparent contact pressure and the contact microhardness.
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Table 15. Values of hardness and elastic modulus for Aluminum

F(mN) H(GPa) ratio F(mN) E(GPa) ratio

0.504 0.271 0.886 0.504 77.7 0.970

1.50 0.306 1.000 1.53 80.1 1.000

4.53 0.295 0.964 4.62 74.7 0.933

13.5 0.258 0.843 14.0 72.1 0.900

41.0 0.231 0.755 40.7 71.9 0.898

119 0.202 0.661 118 70.9 0.885

Figure 12. Normalized Final Unloading
Curves Versus Displacements for Six Mate-
rials Showing Similar Trends. (From Oliver
and Pharr, 1992).

After a review of macrohardness indenters (Brinell, Meyer
and Rockwell B), microhardness indenters (Berkovich, Knoop
and Vickers), and the nanoindenter (Berkovich), it was shown
that the contact microhardness is a complex parameter which
depends on the effective joint surface roughness, apparent con-
tact pressure, and the Vickers microhardness correlation coef-
ficients.

The Vickers correlation coefficients are closely related to
the Brinell hardness, and correlation equations are given.

The physical properties such as yield strength, Brinell hard-
ness and Vickers microhardness are shown to be dependent on
temperature level. Correlation equations are given for the tem-
perature effect.

A brief review of nanoindentation tests and procedures for
calculating the elastic modulus and hardness was given, and
some results from nanoindentation tests are given for several
materials.

Table 16. Values of hardness and elastic modulus for Tungsten

Load(mN) Hardness(GPa) Load(mN) Modulus(GPa)
0.512 5.86 0.499 372.0

1.49 5.67 1.48 495.0

4.53 5.21 4.49 427.0

13.2 4.55 13.6 403.0

40.9 3.88 41.1 401.0

119 3.75 120 400.0
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Table 17. Values of hardness and elastic modulus for Quartz

Load(mN) Hardness(GPa) Load(mN) Modulus(GPa)
0.506 12.9 0.515 119.0

1.50 13.8 1.50 122.0

4.46 13.3 4.63 119.0

13.5 13.2 13.8 123.0

40.2 12.5 40.8 121.0

117 12.4 121 125.0

In general the contact microhardness is a complex parameter because it depends on the effective joint
surface roughness, the apparent contact pressure, the bulk hardness, and the temperature level.
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