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Abstract 
Existing models over-predict the thermal contact 

resistance of conforming rough joints at low contact 
pressures. However, the applicable pressure range in the 
microelectronics industry is low due to load constraints. In 
this paper a new model is presented which is more suitable for 
low pressures. The present model assumes plastic deformation 
at microcontacts. The effect of elastic deformations beneath 
the microcontacts is determined by superimposing normal 
deformations in an elastic half-space due to adjacent 
microcontacts. The model also accounts for the variation of 
the effective microhardness. A parametric study is conducted 
to investigate the effects of main contact input parameters on 
the elastic effect. The study reveals that the elastic 
deformation effect is an important phenomenon especially in 
low contact pressures. The present model is compared with 
experimental data and good agreement is observed at low 
contact pressures.  
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Nomenclature 
A  = area, m2 
a   = radius of microcontacts, m 
bL  = specimen radius, m 
c1, c2 = Vickers microhardness coefficients 
E = Young’s modulus, Pa  
E′ = effective elastic modulus, Pa  
F = applied load, N  
Hmic = microhardness, Pa  
H* = non-dimensional microhardness Hmic / E′  
k = thermal conductivity, W/mK 
L = distance between microcontacts, m 
m = combined mean absolute surface slope 
n = number of microcontacts 
P = apparent contact pressure, Pa 
Rj = thermal joint resistance, K/W 
r = radial position, m 
x = non-dimensional position, r/L 
Y = mean surface plane separation, m 

Greek 
γ = plasticity index, Hmic / E′ m  
 

ε = relative radius, ar AA /  

η = density of microcontacts, m-2  
Λ = non-dimensional length, ( )mbL //2 σ   

λ = non-dimensional separation, σ2/Y  
σ = combined RMS surface roughness, m 
υ = Poisson’s ratio 
ω = normal elastic deformation, m 

Subscripts 
0 = pure plastic model value 
1,2 = solid 1, 2 
a = apparent 
r = real 
s = solid, micro 

1. Introduction 
The continued growth in performance and functionality of 

microelectronic and avionic systems has resulted in a 
significant increase in heat dissipation rates and presents a 
great challenge to thermal engineers. The heat generated must 
pass through a complex network of thermal resistances to 
dissipate from the junction to the surroundings. A significant 
resistance in the network is the thermal constriction/spreading 
resistance through microcontacts at the interface between the 
package and its heat sink. Therefore, an accurate knowledge 
of mechanics of the contact, i.e. number and size of 
microcontacts, is essential for the thermal resistance analysis. 

When random rough surfaces are placed in mechanical 
contact, real contact occurs at the summit of surface asperities 
which are called microcontacts. The real contact area, Ar, the 
summation of the microcontacts, forms a small portion of the 
nominal contact area, typically a few percent of the nominal 
contact area. The contact between two Gaussian rough 
surfaces is modeled by the contact between a single Gaussian 
surface, that has the combined characteristics of the two 
surfaces, with a perfectly smooth surface. The combined 
roughness, σ, and surface slope, m, can be found from 

 

             2
2

2
1

2
2

2
1 mmm +=+= σσσ                (1) 

 
To study the constriction/spreading resistance of 

microcontacts, the joint is usually studied in a vacuum where 
the heat transfer between contacting bodies occurs only via 
conduction through microcontacts. Thermal Contact 
Resistance (TCR) of conforming rough surfaces in a vacuum 
is proportional to the real contact area [1]. TCR can be 
decreased by reducing the roughness and out-of-flatness of the 
surfaces before the interface is formed or increasing contact 
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pressure. However, manufacturing highly finished surfaces is 
not practical due to cost constraints. Also, load constraints on 
electronic components make it unfeasible to use high contact 
pressure.  

Very little has been done for light pressures <0.1 MPa, 
which is the applicable range for microelectronics devices. 
Existing models such as [2,3] can predict TCR for moderate 
to high contact pressures accurately. Milanez et al. [4] 
experimentally studied low contact pressure joints in a 
vacuum and showed that the models [2,3] overestimate the 
TCR at low pressures. They called this phenomenon the 
truncation effect and attributed this trend to the Gaussian 
assumption of the surface asperities which implies that 
asperities with infinite heights exist. Milanez et al. [4] 
proposed correlations for maximum asperities heights as 
functions of surface roughness. 

Existing plastic models [2,3] do not consider the effect of 
elastic deformations beneath the microcontacts. These effects 
would be negligible if the elastic modulus of contacting 
bodies were infinity and/or the distance between the 
neighboring microcontacts was small enough so the elastic 
deformation was the same for all microcontacts. In reality, 
none of the above is true and the elastic deflection underneath 
a microcontact is always larger than the deformation outside 
the microcontact area (mean plane). Mikic [5] was the first 
one to point out this problem and proposed a model. However, 
his model did not consider the effect of the elastic 
deformation of neighboring microcontacts and variation in the 
effective microhardness which was reported later by Hegazy 
[6]. Also Mikic did not compare his model against 
experimental data. 

2. Problem Statement 
Figure 1 shows the cross-section of the contact 

schematically; note that the surface slopes of asperities, m, is 
exaggerated. In reality, the surface asperities can be visualized 
as shallow hills and valleys. In this study the microcontacts 
are assumed to deform plastically, reasons supporting this 
assumption are discussed in the next section. 
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Fig.1. Effect of elastic deformation on mean separation 
Consider plastically deformed microcontacts as loaded 

areas on an elastic half-space. The pressure applied on the 
microcontacts is the effective microhardness of the joint. As 
elastic deformations occur beneath the plastic microcontacts, 
mean separation between the two contacting surfaces 

decreases, compared with the value predicted by the pure 
plastic model where the elastic deformation is neglected, i.e. 
Y<Y0. As a result of smaller separation, more microcontacts 
are formed which in turn leads to a higher real contact area 
that is equivalent to a lower TCR. 

The goal of this study is to investigate the effect of elastic 
deformations beneath the plastically deformed microcontacts 
on TCR. A new model is proposed that accounts for the 
elastic deformation of microcontacts and variation of effective 
microhardness with mean radius of microcontacts. A novel 
numerical algorithm is presented that satisfies the force 
balance. The present model is compared with experimental 
data. 

3. Why Plastic Microcontacts? 
Different approaches have been taken to analyze the 

deformation of asperities by assuming plastic [2], elastic [7], 
or elastoplastic [8,9] regimes at microcontacts. It has been 
observed through experiments that the real contact area is 
proportional to the applied load [10]. However, if simple 
elastic deformation, following the Hertzian theory, is assumed 
for asperities, the real contact area will not be linearly 
proportional to the load, instead one obtains, 3/2FAr ∝ . 
Greenwood and Williamson (GW) [7] developed an elastic 
contact model. They proposed that as the load increases new 
microcontacts are nucleated while the mean size of 
microcontacts remains constant; the GW model satisfied the 
observed proportionality, FAr ∝ . As a result, an effective 
elastic microhardness can be defined for elastic models which 
shows that the assumption of elastic and/or plastic 
deformation of asperities leads to similar results [7,11]. 
Greenwood and Williamson [7] introduced a plasticity index 
as a criterion for plastic flow of microcontacts. They reported 
that the load has little effect on the deformation regime. Based 
on plasticity index, Greenwood and Williamson concluded 
that except for especially smooth surfaces, the asperities will 
flow plastically under the lightest loads. Considering an 
indentation hardness for asperities, Persson [12] also 
concluded that except for polished surfaces all microcontacts 
deform plastically. Mikic [5] proposed a plasticity index, 
γ=Hmic/E′m, to determine the deformation mode of asperities 
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Mikic [5] also concluded that for most engineering 
surfaces the asperity deformation mode is plastic and the 
average asperity pressure is the joint effective microhardness. 
According to [5], the deformation mode of asperities depends 
on material properties and the shape of asperities; also it is not 
a function of the applied load. 
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4. Microhardness 
Microhardness can vary throughout the material as the 

indentation depth is increased [13]. Microhardness depends on 
several parameters, mean surface roughness, mean slope of 
asperities, method of surface preparation, and applied 
pressure. Depending on the surface preparation, 
microhardness can be much greater than the bulk hardness 
[6,12]. As shown in Fig. 2, microhardness decreases with 
increasing depth of the indenter until bulk hardness is 
obtained. Hegazy [6] concluded that this increase in the 
plastic yield stress (microhardness) of the metals near the free 
surface is a result of local extreme work hardening or some 
surface strengthening mechanism. He proposed empirical 
correlations to account for the decrease in microhardness with 
increasing depth of penetration  

           ( ) mdddcH c
vmic µ1and/ 001

2 ==          (3) 

where tdv 7=  is the Vickers indentation diagonal in 
micrometers. The correlation coefficients c1 and c2 are 
determined from Vickers microhardness measurements. 
Equation (3) is general and can also be used for surfaces that 
have a constant microhardness, Hmic,e, by substituting c1= 
Hmic,e  and c2=0. 
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Fig. 2. Measured hardness and microhardness [6] 
 
Song and Yovanovich [14] proposed a correlation to calculate 
microhardness as follows: 
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5. Pure Plastic Models 
Cooper et al. (CMY) [2], based on the level-crossing 

theory and using the sum surface approximation, derived 
relationships for mean microcontact size, a, and density of 
microcontacts, η, by assuming hemispherical asperities whose 
heights and slopes have Gaussian distributions 
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where λ is the dimensionless separation. They also showed 
that the ratio of the real contact area to the apparent area is 
related to the mean separation 
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where Hmic is the effective microhardness of the softer 
material in contact and, P=F/Aa, is the nominal contact 
pressure. 

Pullen and Williamson [15] experimentally investigated 
plastic flow under large loads. They assumed that material 
displaced from the contacting regions must reappear by 
raising some parts of the non-contacting surface. They 
assumed that the volume of material remained constant and 
that the material that is plastically displaced appears as a 
uniform rise over the entire surface. Since the uniform rise 
will not affect the shape of the surface outside the contact 
area, they showed that the contact area due to the interaction 
of microcontacts is not proportional to the normal load at 
relatively high loads; and proposed as a good approximation; 

( )ppar PPAA += 1// , where Pp=Pm/Hmic. 

6. Present Model 
The modeled geometry of the contact is shown in Fig. 3. 

Nine microcontacts, named A to I, are shown in Fig. 3 as 
hatched identical circles of radius, a. The microcontacts are 
assumed to be arranged in a square array where the shortest 
distance between neighboring microcontacts is L. From Fig. 3, 
one can calculate the relative radius as 
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Fig. 3. Modeled geometry of contact plane. 
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The normal elastic displacement of a half-space produced 
as a result of applying a uniform pressure distribution Hmic 
over a circular area of radius a can be determined from [16] 
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where r is the radial location measured from the center of the 
loaded area; and E(.)  and K(.) are the complete elliptic 
integrals of the second and the first kind, respectively. The 
mean elastic deformation of the loaded circular area is: 

EaHmic ′= πϖ 3/16 . 
Equation (8) can be non-dimensionalized and re-arranged 

in the following form: 
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where 
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and x=r/L. Relationship for the deformation outside the 

contact area, i.e., πε /≥x is complex as given in Eq. (9). 
The following simpler relationship can be used to calculate 
the deformation of a half-space outside the loaded area over a 
wide range of x and ε with a reasonable accuracy: 
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 The elastic deformation of a half-space is linear, thus 

superposition can be applied to calculate the total elastic 
deformation due to the microcontact “A” and neighboring 
microcontacts. 

 The line AM, Fig. 3, is chosen as a representative (or 
mean plane) of the half-space to estimate the total elastic 
deformations due to microcontacts A to I. Using superposition 
the elastic deformation of the mean plane AM is 
       GHBEDAAM ωωωωωωω 222 +++++=         (12) 
where due to symmetry ωB= ωC, ωG= ωI , and ωF= ωH. 

The non-dimensional mean elastic deformation underneath 

the microcontact A, πε /0 << x , due to its neighbors 
and itself is 
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where ai and bi are the constants due to changing the location 
of the origin from each neighboring microcontact to the center 

of the microcontact “A”. Using the same method, the mean 
deformation for the rest of the mean plane AM, i.e., 

2/1/ ≤≤ xπε can be found: 
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Finally the mean elastic deformation of the mean plane 

AM can be calculated using *
2

*
1  and ωω . 

Figure 4 shows the mean deformation due to microcontact 
A only, total mean deformation considering the effects of 
neighbors, and the net elastic displacement for the 
microcontact “A” as the relative radius of microcontacts ε 
varies. As expected, for small values of ε i.e. <0.01 relatively 
low contact pressure, the effects of neighboring microcontacts 
is small and can be ignored. As ε increases, the effect of 
neighboring microcontacts become more significant, also the 
displacement of the mean plane increases. As a result of these 
two competing trends, the net elastic deformation beneath the 
microcontact “A” becomes smaller and eventually the net 
displacement approaches zero at relatively large loads. 
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Fig. 4. Elastic deformation beneath microcontact A, for 

πε /0 << x  

6.1. Numerical Algorithm 
A new numerical model is developed to account for the 

elastic deformation beneath microcontacts and variations in 
microhardness. The numerical algorithm used in the present 
model is described below and is shown in Fig. 5. 

Cooper et al.'s (CMY) [2] relationships, Eqs. (5), (6) are 
used to calculate the mean radius a0, density η0, relative radius 
ε0, and mean separation of the joint λ0. Song and Yovanovich 
correlation [14], Eq. (4), is employed to estimate an effective 
microhardness H′ for the pure plastic model. The subscript 
“0” indicates the pure plastic model values. 

The net mean elastic deformation, ωnet= ω1-ωAM, is then 
calculated using relative radius ω0 as described in the previous 
section. A new mean separation between contacting surfaces 
can be found from 

                                     σωλλ 2/0 net−=                   (15) 
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With new separation λ, one can determine a new density 
of microcontacts η from Eq. (5). Applying a force balance, a 
new mean radius of microcontacts a is determined from 

                                  
ηπ amic AH

Fa =                      (16) 

Since the mean radius of the microcontacts changes as the 
applied load varies, the microhardness will also change 
according to Eq. (3). If the print area in a Vickers test is 
assumed to be equal to the microcontact area, a relation 
between the Vicker's diagonal and the mean size of 
microcontacts can be found as 

                                   adv π2=                              (17) 
Therefore, a new effective microhardness can be 

computed from the new radius of microcontacts. This 
procedure continues until the difference between the new 
mean radius of microcontacts a and the old one a0 becomes 
negligible. The results of the above procedure, i.e. the mean 
radius and the density of microcontacts, are used to calculate 
the TCR of the joint. The thermal resistance analysis is based 
on the premise that there are n (=ηAa) identical circular 
microcontacts of radius a that provide n parallel paths for 
thermal energy to be transferred in the contact plane. The 
constriction/spreading resistance of the joint then can be 
determined by employing the flux tube solution [13] as: 
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where ks=2k1k2/(k1+k2) is the harmonic mean of thermal 
conductivities of the contacting bodies. 

6.2. Trends of Contact Parameters 
The present model is run for a joint as the applied load is 

varied over a wide range to study the trends of the contact 
parameters; see Figs. 6 and 7 for the contact input parameters. 
The contact parameters calculated by both the present and the 
pure plastic models are listed in Table 1. 

 
pure plastic model present model F 

(N) λ0 ε0 a0 (µm) η0 λ ε a 
(µm) 

η 
0.001 4.88 1.57E-6 4.76 0.03 4.77 2.66E-6 4.71 0.10 
0.01 4.63 5.47 E-6 5.01 0.38 4.52 8.38E-6 4.65 1.03 
0.1 4.36 1.89 E-5 5.31 4.03 4.25 2.65E-5 4.66 10.31 
1 4.07 6.45 E-5 5.66 41.34 3.96 8.41E-5 4.74 100.1 
5 3.87 1.51 E-4 5.94 205.94 3.75 1.89E-4 4.86 481.1 
10 3.77 2.18 E-4 6.08 408.69 3.66 2.68E-4 4.93 940.7 
50 3.55 5.07 E-4 6.44 1975.3 3.43 6.03E-4 5.13 4396.6 
100 3.45 7.28 E-4 6.61 3864.6 3.33 8.57E-4 5.25 8481.1 
200 3.35 1.05 E-3 6.80 7524.41 3.23 1.22E-3 5.38 16282 
1000 3.10 2.41 E-3 7.30 34627.8 2.97 2.76E-3 5.78 72497 
2000 2.99 3.44 E-3 7.55 66171 2.86 3.93E-3 6.00 136509 
5000 2.84 5.51 E-3 7.91 154167 2.70 6.27E-3 6.34 311572 
10000 2.71 7.85 E-3 8.23 289821 2.58 8.95E-3 6.65 575983 
20000 2.59 1.12 E-2 8.58 540371 2.45 1.28E-2 7.03 1054370 
50000 2.42 1.78 E-2 9.13 1213824 2.27 2.05E-2 7.63 2303327 

Table 1. Contact parameters calculated by present and 
pure plastic models. 

Figures 6 and 7 show the ratio of the contact parameters as 
the non-dimensional pressure P/Hmic is increased. As shown in 
these plots, the ratio of separations λ/λ0 is greater than one for 
the entire comparison due to elastic deformations effect. As a 
result of smaller separation, more microcontacts are formed 
i.e. n/n0>1, the real contact area is increased Ar/Ar0, thus 
thermal resistance is decreased Rj0/Rj>1. It can also be seen 
that these ratios Ar/Ar0, n/n0, and Rj0/Rj decrease as the applied 
load increases which indicates that the elastic deformation 
effect becomes less important at higher loads. This is 
consistent with the trend seen in Fig. 4. 
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Fig. 5. Numerical algorithm used in present model. 
 
Figure 6 shows that the ratio of microcontacts radius 

a/a0<1 throughout the comparison. However, it should be 
noted that the absolute radius of microcontacts, a, increases 
by increasing the load, see Table 1. Therefore, the effective 
microhardness Hmic decreases as the load increases, see Eqs. 
(17) and (3). The effective microhardness shown in Fig. 6 is 
non-dimensionalized with respect to H′=c1(1.62/m)c2. Note 
that, H′, remains constant throughout the comparison. 
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Fig. 6. Ratio of calculated values by present model over pure 
plastic model for: mean separation, mean radius of 
microcontacts, and effective microhardness. 
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Fig. 7. Ratio of calculated values by present model over 

pure plastic model for: density of microcontacts, real contact 
area, and TCR. 
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Fig. 8. Effect of elastic modulus on present model. 
 
 

6.3. Effect of Elastic modulus 
Non-dimensional joint resistances of a typical joint is 

shown in Fig. 8 over a wide range of the non-dimensional 
pressure P/Hmic. Four values of E′=20, 60, 160, and infinity 
(pure plastic model) have been selected to investigate the 
effect of elastic modulus on TCR. The contact input 
parameters are shown in the figure and are kept constant as 
the effective elastic modulus is changed. The ratio of the 
effective microhardness over the effective elastic modulus 
H*=Hmic/ E′ is used as to label these four curves. It can be seen 
that as H* approaches zero, i.e. E′→infinity the present model 
approaches the pure plastic model and the elastic effect 
vanishes. Therefore, it may be concluded that the non-
dimensional parameter, H*, is a measure of how significant is 
the elastic deformation effect. Also note that the difference 
between the present model and the pure elastic model 
decreases as P/Hmic increases. Beyond a certain pressure the 
difference between the pure plastic model and the present 
model (three values of E′) becomes negligible. This is in 
agreement with the observed trend in Fig. 4 which indicates 
that the effect of elastic deformation is more important at 
lighter loads. 

6.4. Effect of Roughness 
To study the effect of roughness on the elastic deformation 

effect, the present model is run over a range of applied load 
for a typical contact. Four levels of roughness, i.e. 0.5, 1, 2, 
and 5 µm are chosen. The predicted joint resistances by the 
present model are normalized with respect to the pure plastic 
model resistances Rj0/Rj and plotted versus the non-
dimensional pressure P/Hmic in Fig. 9. The contact input 
parameters are shown in the figure and are kept constant as 
roughness level is changed. The effective microhardness is 
assumed to be a constant, i.e. it is not a function of the 
penetration depth or microcontacts radius by setting c2=0, to 
investigate the effect of roughness only. 
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Fig. 9. Effect of surface roughness on present model. 
 

As shown in Fig. 9, at a fixed non-dimensional pressure 
P/Hmic, the elastic effect is larger at smaller roughness levels. 
This phenomenon can be explained as follows. The averaged 
non-dimensional net elastic deformation beneath 
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microcontacts *
netω  is a function of relative radius, ε, only 

which is a function of the non-dimensional pressure P/Hmic, 
see Eq. (6). Therefore, at a fixed ε or P/Hmic the net 

deformation *
netω  is the same for all roughness levels. 

However, from Eqs. (10) and (15), one can conclude that the 
reduction in the mean separation λ, due to the elastic effect, is 
proportional to the ratio of a/σ, where relative radius ε and 
microhardness P/Hmic are constant. For smaller roughness 
levels, the ratio a/σ is larger; therefore the net reduction in the 
non-dimensional separation λ is larger. This leads to more 
new microcontacts, larger real contact area and therefore less 
TCR or equivalently more elastic effect. 

7. Comparison with Data 
The present model is compared with experimental data of 

Milanez et al. [4] in Figs. 10 to 12. They collected three sets 
of data for SS 304, the surface parameters of each test are 
listed in the corresponding plot. The pure plastic model is 
included in the comparisons to better show the effect of elastic 
deformation. The average difference between the present 
model and the pure plastic model over the applied load range 
is also reported in the comparisons. The non-dimensional 
parameter H* is also shown for each set of data where Hmic is 
an average value of the effective microhardness over the 
comparison range. As shown in the plots, the data of [4] show 
a better agreement with the present model at relatively low 
loads and move toward the pure plastic model at higher loads. 

The three sets of [4] data differ only in roughness levels 
which are 0.72, 1.29, and 3.07 µm. From Figs. 10 to 12 can be 
seen that the difference between the present model and the 
pure plastic model becomes smaller at data set T3 where 
surface roughness is the largest of the three sets of data. This 
is consistent with the trend seen in Fig. 9. 
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Fig. 10. Comparison of present model with Milanez et al. [4] 
data, test T1. 
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Fig. 11. Comparison of present model with Milanez et al. [4] 
data, test T2. 
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Fig. 12. Comparison of present model with Milanez et al. [4] 
data, test T3. 
 

The present model is also compared with experimental 
data of Hegazy [6] in Figs. 13 to 15. Hegazy conducted 
several experiments with four different alloys. Here, three 
different materials are chosen, i.e. Zr-2.5%wt. Zircaloy 4 and 
nickel 200; which cover a relatively wide range of contact 
input parameters elastic modulus, roughness, thermal 
conductivity, and microhardness coefficients. The material 
properties and surface parameters are listed in the figures. The 
data of [6] are closer to the present model at smaller loads and 
move toward the pure plastic model at larger loads, i.e. the 
same as Milanez et al. [4] data. 
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Fig. 13. Comparison of present model with Hegazy [6] data, 
test PZN0102. 
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Fig. 14. Comparison of present model with Hegazy [6] data, 
test PZ40506. 
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Fig. 15. Comparison of present model with Hegazy [6] data, 
test PNI0102. 

Conclusions 
The effect of elastic deformation of the substrate 

underneath the microcontacts is studied on the TCR of rough 
conforming joints in a vacuum. The microcontacts are 
assumed to deform plastically. A new model is developed that 
accounts for elastic deformations of the substrates due to self 
and neighboring microcontacts using superposition of elastic 

deformations in a half-space. The present model also accounts 
for the variation in the effective microhardness and satisfies 
the force balance. 

The microcontacts are assumed as identical circles which 
are arranged in a square array. Relationships are derived for 
the average normal elastic deformation of the elastic substrate 
beneath microcontacts. The net elastic deformation of the 
microcontacts is calculated. Using the level-crossing theory, 
the mean separation between two contacting bodies is 
modified for the net elastic deformation. An iterative 
numerical algorithm is developed to compute the modified 
mean size, density, and the contact resistance of the joint. The 
force balance principle is used in the numerical solution. 

The trends of the present model are studied and compared 
with the pure plastic model where the elastic deformation is 
completely ignored. It is observed that as a result of the elastic 
deformation the mean separations between two contacting 
surfaces becomes smaller; thus 

• more microcontacts are nucleated,  
• the real contact area is increased, and  
• thermal contact resistance is decreased . 
It is also shown that the elastic deformation effect 

becomes less important at higher loads. This is a direct result 
of that the net elastic deformation approaches zero at 
relatively high loads, i.e. the elastic deformation is uniform 
for the whole mean plane. 

A parametric study is performed to investigate the effects 
of main input contact parameters on the joint resistance. A 
non-dimensional parameter H*=Hmic/ E′ is introduced as a 
measure of importance of the elastic deformation. As H* 
approaches zero, or E′→infinity, the present model approaches 
the pure plastic model. It is also shown that for a fixed 
contact, the elastic effect is more significant at smaller 
roughness levels. 

The present model is compared against experimental data 
of [4] and [6]. The experimental data cover a relatively wide 
range of input contact parameters. The data show good 
agreement with the present model at low contact loads. The 
data however move toward the pure plastic model at high 
contact loads. As a result of this trend, one can conclude that 
the present and the pure plastic models present lower and 
higher bounds for the thermal joint resistance of the 
conforming rough surfaces in a vacuum, respectively.  
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