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In this study, an integral approach of the boundary layer analysis
is employed to investigate fluid flow around and heat transfer from
an infinite circular cylinder. The Von Karman–Pohlhausen method
is used to solve momentum integral equation and the energy inte-
gral equation is solved for both isothermal and isoflux boundary
conditions. A fourth-order velocity profile in the hydrodynamic
boundary layer and a third-order temperature profile in the ther-
mal boundary layer are used to solve both integral equations.
Closed form expressions are obtained for the drag and the aver-
age heat transfer coefficients which can be used for a wide range
of Reynolds and Prandtl numbers. The results for both drag and
heat transfer coefficients are in good agreement with
experimental/numerical data for a circular cylinder.
�DOI: 10.1115/1.1924629�

Introduction
The equations describing fluid flow and heat transfer in forced

convection are complicated by being nonlinear. These nonlineari-
ties arise from the inertial and convective terms in the momentum
and energy equations, respectively. From a mathematical point of
view, the presence of the pressure gradient term in the momentum
equation for forced convection further complicates the problem.
The energy equation depends on the velocity through the convec-
tive terms and, as a result, is coupled with the momentum equa-
tion.

Because of these mathematical difficulties, the theoretical in-
vestigations about fluid flow around and heat transfer from circu-
lar cylinders have mainly centered upon asymptotic solutions.
These solutions are well documented in the open literature and are
valid for very large ��2�105� and small ��1� Reynolds num-
bers. However, no theoretical investigation could be found that
can be used to determine drag coefficients and average heat trans-
fer from cylinders for low to moderate Reynolds numbers �1–2
�105� as well as for large Prandtl numbers ��0.71�. For this
range of Reynolds numbers and for selected fluids, there has been
heavy reliance on both experiments and numerical methods. These
approaches are not only expensive and time consuming but their
results are applicable over a fixed range of conditions.

Unfortunately, many situations arise where solutions are re-
quired for low to moderate Reynolds numbers and for fluids hav-
ing Pr�0.71. Such solutions are of particular interest to thermal
engineers involved with cylinders and fluids other than air or wa-
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ter. In this study a circular cylinder is considered in cross flow to
investigate the fluid flow and heat transfer from a cylinder for a
wide range of Reynolds and Prandtl numbers.

A review of existing literature reveals that most of the studies
related to a single isolated cylinder are experimental or numerical.
They are applicable over a fixed range of conditions. Furthermore,
no analytical study gives a closed form solution for the fluid flow
and heat transfer from a circular cylinder for a wide range of
Reynolds and Prandtl numbers. At most, they provide a solution at
the front stagnation point or a solution of boundary layer equa-
tions for very low Reynolds numbers. In this study, a closed form
solution is obtained for the drag coefficients and Nusselt number,
which can be used for a wide range of parameters. For this pur-
pose, the Von Karman–Pohlhausen method is used, which was
first introduced by Pohlhausen �1� at the suggestion of Von Kar-
man �2� and then modified by Walz �3� and Holstein and Bohlen
�4�. Schlichting �5� has explained and applied this method to the
general problem of a two-dimensional boundary layer with pres-
sure gradient. He obtained general solutions for the velocity pro-
files and the thermal boundary layers and compared them with the
exact solution of a flat plate at zero incidence.

Analysis
Consider a uniform flow of a Newtonian fluid past a fixed cir-

cular cylinder of diameter D, with vanishing circulation around it,
as shown in Fig. 1. The approaching velocity of the fluid is Uapp
and the ambient temperature is assumed to be Ta. The surface
temperature of the wall is Tw��Ta� in the case of the isothermal
cylinder and the heat flux is q for the isoflux boundary condition.
The flow is assumed to be laminar, steady, and two-dimensional.
The potential flow velocity just outside the boundary layer is de-
noted by U�s�. Using order-of-magnitude analysis, the reduced
equations of continuity, momentum and energy in the curvilinear
system of coordinates �Fig. 1� for an incompressible fluid can be
written as:
Continuity:
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Hydrodynamic Boundary Conditions. At the cylinder sur-
face, i.e., at �=0
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Thermal Boundary Conditions. The boundary conditions for
the uniform wall temperature �UWT� and uniform wall flux
�UWF� are:

� = 0, �T = Tw for UWT

�T

��
= −

q

kf
for UWF � �8�

� = 
T, T = Ta and
�T

��
= 0 �9�

Velocity Distribution. Assuming a thin boundary layer around
the cylinder, the velocity distribution in the boundary layer can be
approximated by a fourth order polynomial as suggested by Pohl-
hausen �1�:
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where 0��H=� /
�s��1 and � is the pressure gradient param-
eter, given by
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With the help of velocity profiles, Schlichting �5� showed that the
parameter � is restricted to the range −12���12.

Temperature Distribution. Assuming a thin thermal boundary
layer around the cylinder, the temperature distribution in the ther-
mal boundary layer can be approximated by a third order polyno-
mial
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for the isothermal boundary condition and

T − Ta =
2q
T

3kf
�1 −

3

2
�T +

1

2
�T

3� �13�

for the isoflux boundary condition.

Boundary Layer Parameters. In dimensionless form, the mo-
mentum integral equation can be written as

U
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where 
1 and 
2 are the displacement and momentum boundary
layer thicknesses.

By solving the momentum integral equation, Khan �6� obtained
the local dimensionless boundary layer and momentum thick-

Fig. 1 Flow over a circular cylinder
nesses:
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where ReD is the Reynolds number, defined as

ReD =
UappD

�
�17�

and � is the pressure gradient parameter, whose values are ob-
tained corresponding to each position along the cylinder surface.
These values were fitted by the least squares method and given by
Khan �6�. Using analytical definition of the point of separation,
Khan �6� obtained the angle of separation as 
s=107.71 deg, that
depends on the velocity distribution inside the boundary layer.
This angle of separation is in close agreement with Schöenauer �7�
�=104.5 deg�, Schlichting �5� �109.5 deg�, Žukauskas and Žiug-
žda �8� �105 deg� and Churchill �9� �108.8 deg�.

Fluid Flow. The first parameter of interest is fluid friction
which manifests itself in the form of the drag force FD, where FD
is the sum of the skin friction drag Df and pressure drag Dp. Skin
friction drag is due to viscous shear forces produced at the cylin-
der surface, predominantly in those regions where the boundary
layer is attached. In dimensionless form, it can be written as
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The friction drag coefficient can be defined as

CDf =�
0

�

Cf sin 
d
 =�
0


s

Cf sin 
d
 +�

s

�

Cf sin 
d
 �19�

Since the shear stress on the cylinder surface after boundary layer
separation is negligible, the second integral will be zero and the
friction drag coefficient can be written as

CDf =�
0


s

Cf sin 
d
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5.786

ReD

�20�

Pressure drag is due to the unbalanced pressures which exist be-
tween the relatively high pressures on the upstream surfaces and
the lower pressures on the downstream surfaces. In dimensionless
form, it can be written as

CDp =�
0

�

Cp cos 
d
 �21�

where Cp is the pressure coefficient and can be defined as

Cp =
�P

1
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2
�22�

The pressure difference �P can be obtained by integrating

-momentum equation with respect to 
. In dimensionless form, it
can be written as

�P
1
2�Uapp

2
= 2�1 − cos 
� +

8

ReD
�1 − cos 
� �23�

So, the pressure drag coefficient for the cylinder up to the sepa-
ration point will be

CDp =�
0


s

Cp cos 
d
 = 1.152 +
1.26

ReD
�24�

The total drag coefficient CD can be written as the sum of both

drag coefficients

Transactions of the ASME



�

CD =

5.786

ReD

+ 1.152 +
1.26

ReD
�25�

which was also obtained by Khan et al. �10� as a limiting case of
an elliptical cylinder.

Heat Transfer. The second parameter of interest in this study is
the dimensionless average heat transfer coefficient, NuD for large
Prandtl numbers ��0.71�. This parameter is determined by inte-
grating Eq. �5� from the cylinder surface to the thermal boundary
layer edge. Assuming the presence of a thin thermal boundary
layer 
T along the cylinder surface, the energy integral equation
for the isothermal boundary condition can be written as

d

ds�0
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��
	

�=0
�26�

Using velocity and temperature profiles Eqs. �10� and �12�, and
assuming �=
T /
�1, Eq. �26� can be simplified to


T
d

ds
�U�s�
T��� + 12�� = 90� �27�

This equation can be rewritten separately for the two regions �Fig.
1�, i.e.
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for region II. Integrating Eqs. �28� and �29�, in the respective
regions, with respect to s, one can obtain local thermal boundary
layer thicknesses
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The local heat transfer coefficients, for the isothermal boundary
condition, in both the regions can be written as

h1�
� =
3kf

2
T1

and h2�
� =
3kf

2
T2

�34�

Thus the dimensionless local heat transfer coefficients, for both

the regions, can be written as
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The average heat transfer coefficient is defined as
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The integral analysis is unable to predict heat transfer values from
separation point to the rear stagnation point. However, experi-
ments �Žukauskas and Žiugžda �8�, Fand and Keswani �11�, and
Nakamura and Igarashi �12� among others� show that, the heat
transfer from the rear portion of the cylinder increases with Rey-
nolds numbers. From a collection of all known data, Van der
Hegge Zijnen �13� demonstrated that the heat transferred from the
rear portion of the cylinder can be determined from NuD
=0.001 ReD that shows the weak dependence of average heat
transfer from the rear portion of the cylinder on Reynolds num-
bers. In order to include the share of heat transfer from the rear
portion of the cylinder, the local heat transfer coefficients are in-
tegrated upto the separation point and averaged over the whole
surface, that is
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Using Eqs. �30�–�34�, Eq. �37� can be solved for the average heat
transfer coefficient which gives the average Nusselt number for an
isothermal cylinder as

�NuD�isothermal = 0.593 ReD
1/2 Pr1/3 �38�

For the isoflux boundary condition, the energy integral equation
can be written as

d

ds�0


T

�T − Ta�ud� =
q

�cp
�39�

Assuming constant heat flux and thermophysical properties, Eq.
�39� can be simplified to

d
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T
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�
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Rewriting Eq. �40� for the two regions in the same way as Eq.
�27�, one can obtain local thermal boundary layer thicknesses 
T1
and 
T2

under isoflux boundary condition. The local surface tem-
peratures for the two regions can then be obtained from tempera-
ture distribution

�T1�
� =
2q
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3kf
�41�

and

�T2�
� =
2q
T2

3kf
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The local heat transfer coefficient can now be obtained from its
definition as

h1�
� =
q

�T1�
�
and h2�
� =

q

�T2�
�
�43�

which give the local Nusselt numbers for the cross flow over a

cylinder with constant flux
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Following the same procedure for the average heat transfer co-
efficient as mentioned above, one can obtain the average Nusselt
number for an isoflux cylinder as

�NuD�isoflux = 0.632 ReD
1/2 Pr1/3 �45�

This Nusselt number is 6% greater than the average Nusselt num-
ber for an isothermal cylinder. Combining the results for both
thermal boundary conditions, we have

NuD

ReD
1/2 Pr1/3 = 
0.593 for UWT

0.632 for UWF
� �46�

The same values were obtained by Khan �10� as a limiting case of
an elliptical cylinder.

Results and Discussion

Flow Characteristics. The dimensionless local shear stress,
Cf


ReD, is plotted in Fig. 2. It can be seen that Cf is zero at the
stagnation point and reaches a maximum at 
�58 deg. The in-
crease in shear stress is caused by the deformation of the velocity
profiles in the boundary layer, a higher velocity gradient at the
wall and a thicker boundary layer. In the region of decreasing Cf
preceeding the separation point, the pressure gradient decreases
further and finally Cf falls to zero at 
=107.7°, where boundary-
layer separation occurs. Beyond this point, Cf remains close to
zero up to the rear stagnation point. These results are compared
with the experimental results of Žukauskas and Žiugžda �8� and
the numerical data of Schönauer �7�. Schönauer �7� data is in good
agreement for the entire range, whereas, Žukauskas and Žiugžda
�8� results are in good agreement for the front part of the cylinder
only. This is probably due to high Reynolds numbers used in
experiments.

The variation of the total drag coefficient CD with ReD is illus-
trated in Fig. 3 for an infinite cylinder in air. The present results

Fig. 2 Distribution of shear stress on a circular cylinder in air
are compared with the experimental results of Wieselsberger �14�

788 / Vol. 127, JULY 2005
as well as numerical data of Sucker and Brauer �15� and Niuws-
tadt and Keller �16�. The present results are in good agreement
except at ReD=2�103, where a downward deviation �23.75%� in
the experimental results was noticed. No physical explanation
could be found in the literature for this deviation.

Heat Transfer Characteristics. The comparison of local Nus-
selt numbers for the isothermal and isoflux boundary conditions is
presented in Fig. 4. The isoflux boundary condition gives a higher
heat transfer coefficient over the larger part of the circumference.
On the front part of the cylinder �up to 
�30 deg�, there is no
appreciable effect of boundary condition. Empirical correlation of
Kreith �17� as well as experimental data of Nakamura and Igarashi
�12�, van Meel �18� and Giedt �19� are also plotted to compare the
analytical distribution of local heat transfer coefficients for iso-
thermal boundary condition. The integral analysis of the boundary
layer gives higher local heat transfer coefficients �around 15%�

Fig. 3 Drag coefficient as a function of ReD for a circular
cylinder

Fig. 4 Local Nusselt numbers for different boundary

conditions
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over the entire circumference of the cylinder. This discrepancy is
probably due to the assumed velocity and temperature profiles in
the boundary layer.

The results of heat transfer from a single isothermal cylinder
are shown in Fig. 5, where they are compared with the experimen-
tal data of Hilpert �20�, King �21�, Hughes �22�, Kennely and
Sanborn �23�, and Žukauskas �24�. Good agreement is observed in
the entire laminar flow range except in the subcritical range. The
discrepancy increases as the Reynolds number increases. This dis-
crepancy is probably due to the effect of free-stream turbulence or
vortex shedding in actual experiments. It was demonstrated by
Kestin �25�, Smith and Kuethe �26�, Dyban and Epick �27�, and
Kestin and Wood �28� that the heat transfer coefficient increases
with turbulence intensity and that this effect is more intense when
the Reynolds number is higher. In the present analysis these ef-
fects are not included, so the discrepancy can be observed clearly
in Fig. 5 for higher Reynolds numbers. Average Nusselt numbers
for the isoflux boundary condition are compared in Fig. 6 with the
experimental/numerical results. The average NuD values are found
to be in a good agreement with both numerical results of Krall and
Eckert �29� and Chun and Boehm �30�. However, the experimen-
tal results of Sarma and Sukhatme �31� are found to be higher
��8% �.

Summary
An integral approach is employed to investigate the fluid flow

and heat transfer from an isolated circular cylinder. Closed form
solutions are developed for both the drag and heat transfer coef-
ficients in terms of Reynolds and Prandtl numbers. The correla-
tions of heat transfer are developed for both isothermal and isoflux
boundary conditions. It is shown that the present results are in
good agreement with the experimental results for the full laminar
range of Reynolds numbers in the absence of free stream turbu-
lence and blockage effects.
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Nomenclature
CD � total drag coefficient

Fig. 5 Variation of average Nusselt number with Reynolds
number for isothermal boundary condition
CDf � friction drag coefficient

Journal of Heat Transfer
CDp � pressure drag coefficient
Cf � skin friction coefficient �2�w /�Uapp

2

Cp � pressure coefficient �2�P /�Uapp
2

cp � specific heat of the fluid �J/kg K�
D � cylinder diameter �m�
k � thermal conductivity �W/m K�
h � average heat transfer coefficient �W/m2 K�

NuD � average Nusselt number based on the diameter
of the cylinder �hD /kf

Pr � Prandtl number �� /�
P � pressure �N/m2�
q � heat flux �W/m2�

ReD � Reynolds number based on the diameter of the
cylinder �DUapp/�

s � distance along the curved surface of the circu-
lar cylinder measured from the forward stagna-
tion point �m�

T � temperature �C�
Uapp � approach velocity �m/s�
U�s� � potential flow velocity just outside the bound-

ary layer �2Uapp sin 
 �m/s�
u � s-component of velocity in the boundary layer

�m/s�
v � �-component of velocity in the boundary layer

�m/s�

Greek Symbols
� � thermal diffusivity �m2/s�

 � hydrodynamic boundary-layer thickness �m�


1 � displacement thickness �m�

2 � momentum thickness �m�

T � thermal boundary layer thickness �m�
� � distance normal to and measured from the sur-

face of the circular cylinder �m�
� � pressure gradient parameter
	 � absolute viscosity of the fluid �N s/m2�
� � kinematic viscosity of the fluid �m2/s�
� � density of the fluid �kg/m3�
� � shear stress �N/m2�

 � angle measured from front stagnation point

Fig. 6 Variation of average Nusselt number with Reynolds
number for isoflux boundary condition
�rad�
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� � ratio of thermal and hydrodynamic boundary
layers �
T /


Subscripts
a � ambient
f � fluid or friction

H � hydrodynamic
p � pressure
s � separation
T � thermal or temperature
w � wall
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