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ABSTRACT

An integral approach of the boundary layer analysis is em-
ployed for the modeling of fluid flow around and heat transfer
from infinite circular cylinders in power-law fluids. The Von
Karman-Pohlhausen method is used to solve the momentum inte-
gral equation whereas the energy integral equation is solved for
both isothermal and isoflux boundary conditions. A fourth-order
velocity profile in the hydrodynamic boundary layer and a third-
order temperature profile in the thermal boundary layer are used
to solve both integral equations. Closed form expressions are
obtained for the drag and heat transfer coefficients that can be
used for a wide range of the power-law index, and generalized
Reynolds and Prandtl numbers. It is found that pseudoplastic
fluids offer less skin friction and higher heat transfer coefficients
than dilatant fluids. As a result, the drag coefficients decrease
and the heat transfer increases with the decrease in power-law
index. Comparison of the analytical models with available ex-
perimental/numerical data proves the applicability of the inte-

gral approach for power-law fluids.
NOMENCLATURE
Co total drag coefficient
Cot friction drag coefficient
Cobp pressure drag coefficient
Ct skin friction coefficient= ZTW/pU§pp
Cp pressure coefficient 2AP/ pUéfpp

Uapp
U(s)

specific heat of the fluidJ/kg- K]

cylinder diameteri]

thermal conductivity v /m- K]

average heat transfer coefficieW [n? - K]
consistency index for non-Newtonian
viscosity [Pa- g7

power-law index

average Nusselt number based on the diameter
of the cylinder= hD/ks¢

Prandtl number for power-law fluids

= (UappD/U)ReBﬁ/(nH)

pressurefl /n¥]

heat flux W /m?]

generalized Reynolds number based on the
diameter of the cylindex D”pugag‘/m

distance along the curved surface of the
circular cylinder measured from the forward
stagnation pointi]

temperature’C]

approach velocityrf/s)]

potential flow velocity just outside the boundary
layer= 2Uappsind [m/]

s- component of velocity in the boundary layer
[m/]

n - component of velocity in the boundary layer

[m/s]
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Greek Symbols

a thermal diffusivity [m?/s]

0 hydrodynamic boundary-layer thickness][

01 displacement thickness

o momentum thicknessr]

or thermal boundary layer thicknessi[

n distance normal to and measured from the surface

of the circular cylinderin|

A pressure gradient parameter

Il absolute viscosity of the fluidys/n?]

\Y kinematic viscosity of the fluidif? /<]

P density of the fluid kg/m®]

T shear stress\/n¥]

0 angle measured from front stagnation point [radian]

C ratio of thermal and hydrodynamic boundary
layers= o7/8

subscripts

ambient

fluid or friction

hydrodynamic

pressure

separation

thermal or temperature

wall

s d4voc I —+9

INTRODUCTION
Many practical situations need a knowledge of fluid flow

proach. Later, Schowalter [5], Shah et al. [6], Acrivos et al. [7],
and Lee and Ames [8] extended that work to solve 2-D boundary
layer equations by using similarity transformations. Bizzell and
Slattery [9] used the Von Karman-Pohlhausen integral method
to analyze boundary layer on a sphere and calculated points of
separation for different values of power-law index. However, no
attempt was made to investigate heat transfer to power-law flu-
ids. Wolf and Szewczyk [10] used Blasius series approach to
investigate heat transfer from arbitrary cylinders to power-law
fluids while Serth and Kiser [11] used Goertler series method to
solve 2-D boundary layer equations for power-law fluids. Lin
and Chern [12], and Kim et al. [13] presented laminar momen-
tum boundary-layer analyses for non-Newtonian fluids by using
the Merk-Chao expansion method. They obtained numerical and
closed form solutions to the universal functions and then applied
them to analyze the wedge flow and the flow over a circular cylin-
der and a sphere.

Mizushina and Usui [14] developed a theoretical framework for
the laminar boundary heat transfer from a horizontal cylinder
submerged in power-law fluids and expressed Nusselt number
at the front stagnation point in the form

Nup = 1.04n %“Rej "V Pry/® (1)

Nakayama et al. [15], Shenoy and Nakayama [16], Nakayama
[17], and Anderson [18] extended the Von Karman-Pohlhausen
integral method to obtain solutions to both momentum and en-

around and heat transfer from horizontal cylinders subjected to €rgy equations for power-law fluid flows past wedges, cones and
crossflow of non-Newtonian fluids. These fluids are classified by axisymmetric bodies.

different authors in different ways. One important classification
is the purely viscous fluids (Cho [1]). These fluids are further

From experimental point of view, Shah et al. [6], Luikov
et al. [19-21], James and Acosta [22], Takahashi et al. [23],

subdivided in to shear thinning (or pseudoplastic, e. g. paints, Mizushina et al. [24], Mizushina and Usui [14], Kumar et al.
glues, blood, and suspensions) and shear thickening (or dilatant, [25]; Ghosh et al.  [26], Rao [27] measured local heat/mass
e. g. wet sand, sugar and borax solutions) fluids. In this study, transfer coefficients for the non-Newtonian fluids from a circu-
fluid flow and heat transfer characteristics of these fluids across a@r cylinder in crossflow and determined average heat transfer.
circular cylinder are investigated using a power-law model. This Mizushina et al. [24] developed the following empirical correla-

model is based on the fact that both fluids exhibit a region of lin-

tion for the Nusselt number averaged over the circumference of

ear relationship between stress and strain rate when viewed onthe cylinder:

a log-log plot (Chhabra and Richardson [2]). This is why, pure
viscous fluid are also called power-law fluids.

Literature Review
Fluid flow around and heat transfer from circular cylin-

Nup = 0.72n*0-4Rq1)/’§”+l) Prll)/e’ 2

whereas Ghosh et al. [26] developed the following empirical cor-
relation for heat and mass transfer from a cylinder in crossflow

ders in crossflow to Newtonian fluids has been extensively stud- to power-law fluids:

ied theoretically, experimentally and numerically by many re-

searchers (Khan et al. [3]) but for non-Newtonian and especially
for power-law fluids these types of studies are very limited. From

a theoretical point of view, Acrivos et al. [4] were the first who

Nup = 0.78]Rg)-Pry>  for 10< Repp < 25000 (3)

investigated the forced convective heat transfer from an isother- Coelho and Pinho [28-30] performed a series of experiments to

mal flat plate to power-law fluids using analytical-numerical ap-

2

study the flow of non-Newtonian fluids around a cylinder. They
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measured shedding frequency, the formation lengthand the “y
pressure distribution around a cylinder and determined the shed- —1 U
ding regimes and the drag coefficients. — I(s)

D’Alessio and Pascal [31] investigated numerically the
steady power-law flow around a circular cylinder at three dif-
ferent Reynolds numberRey, = 5, 20, and 40 using a first-
order accurate difference method for a fixed blockage ratio. They

found that the critical Reynolds number, wake length, separa- Uappa a

tion angle and drag coefficient depend on the power-law index. D

Chhabra et al. [32] extended that work by using a more accu- - < > X
—

rate second-order finite difference method, more refined compu-
tational meshes, and greater blockage ratio and power-law index
ranges in order to investigate the effect of blockage on drag co-
efficient, wake length, separation angle, and flow patterns over
wide ranges of conditions. Agarwal et al. [33] investigated nu-

merically the momentum and thermal boundary layers for power-

law fluids over a thin needle under wide ranges of kinematic and

physical conditions. They introduced a similarity variable and Figure 1. Flow over a circular cylinder.
transformed the momentum and energy equations into ordinary
differential equations. They reported extensive results on axial

velocity profiles, shear stress and skin friction distribution on the &M omentum:

surface of the needle, temperature and local Nusselt number vari-

ation, and momentum and thermal boundary layer thicknesses in Jou ou_  1dP 1oty (5)
the following ranges of conditions:.2<n< 1.6, 1< Pr <1000, Js 0n pds podn

Re< 10° and for three needle sizes.

In this study, an approximate method, based on the Karman- n-Momentum:
Pohlhausen integral momentum and energy equations, is used to
study the fluid flow and heat transfer in power-law fluids across

a single circular cylinder. 3—: =0 (6)
Energy:
ANALYSIS
Consider a uniform flow of a non-Newtonian (power-law) oT  aT 52T
fluid past a fixed circular cylinder of diameter D, with vanishing U— +V—=0-—— (7)

circulation around it, as shown in Fig. 1. The approaching veloc-

ity of the fluid isUapp and the ambient temperature is assumed to
beT,. The surface temperature of the walljg > Ty) in the case with
of the isothermal cylinder and the heat fluxgdor the isoflux
boundary condition. The flow is assumed to be laminar, steady, 1dP du(s)

and two dimensional. The fluid is assumed to be incompressible ————=U(s ds (8)
with constant thermophysical and rheological properties. The

potential flow velocity just outside the boundary layer is denoted

by U(s). Using an order-of-magnitude analysis (Khan [34]), the and

reduced equations of continuity, momentum and energy in the

curvilinear system of coordinates (Fig. 1) for a power-law fluid B ou\" 9
can be written as: Ww=m5 i )
Continuity: n=

wheremis a consistency index for non-Newtonian viscosity and
nis called power-law index, that is 1 for pseudoplastics 1 for
Newtonian, and> 1 for dilatant fluids.

ou ov

3 an =° @)
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Hydrodynamic Boundary Conditions

The assumptions of no slip boundary condition at the cylin-
der wall u= 0, atn = 0), no mass flow through the cylinder wall
(v=0atn = 0), and the potential flow just outside the boundary
layer u=U(s) atn = 9(s)] give the following complete set of
hydrodynamic conditions:
(i) at the cylinder surface, i.e., gt=0

dU(s
aZu U (S) d(S )
u=0 and W:— N (20)
"(an)
wherey =m/p.
(i) at the edge of the boundary layer, i.e.pt 6(s)
u=U(s) @70 and a—zufo (11)
= , on = o2 =

These conditions will help in determining the velocity distribu-
tion inside the boundary layer.

Thermal Boundary Conditions

The assumptions of uniform wall temperature (UWT) and
uniform wall flux (UWF) boundary conditions give the following
complete set thermal conditions:
(i) at the cylinder surface, i.e., gt=0

T=Tuy for UWT
62_T =0 and (12)
on? O __ 9 for uwr
ar] Ki
(i) at the edge of thermal boundary layer, i.e.nat ot
oT
T=T, and E =0 (13)

Using these thermal conditions, the temperature distributions in-
side the thermal boundary layer can be determined.

Velocity Distribution

Assuming a thin hydrodynamic boundary layer around the
cylinder, the velocity distribution inside the boundary layer, sat-
isfying Egs. (10) and (11), can be approximated by a fourth order

4

polynomial as suggested by Pohlhausen [35]:
3, 4y, A 2 3 _ .4
U (2nH — 205 +niy) + 5 (M1 = 3nj +3ni —n) - (14)

where 0< ny =n/d8(s) < 1 andA is the pressure gradient pa-
rameter, given by

du(s) sn.1 1-n AN
s 0" U (s) 2+6

A= (15)

ny

With the help of velocity profiles, Schlichting [36] showed that
the parametex is restricted to the range12 < A < 12.

Temperature Distribution

Assuming a thin thermal boundary layer around the cylin-
der, the temperature distribution in the thermal boundary layer,
satisfying Egs. (12) and (13), can be approximated by a third
order polynomial

T-Ta 3 14
TW_Ta—l—énTJrEnT (16)
for the isothermal boundary condition and
2007 3 14
T-Ta= 3 (1—2nT+2nT 17)

for the isoflux boundary condition.

Boundary Layer Parameters
In dimensionless form, the momentum integral equation can
be written as

p2 %%

s (18)

du 1
(262+61)U E = BTW

whered; andd; are the displacement and momentum boundary
layer thicknesses and are given by

61:6/01 [1-@] dn (19)
and
62_6/:@[1—@]% (20)
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Using velocity distribution from Eq. (14), Egs. (19) and (20) can
be written as:

5 A
8= 15 (3— 1—2) (21)
and
52 37 A A% 22)
2~ 63\5 15 144

Simplifying and arranging the terms in Eq. (18), we get

Uég @ +@ 6g+lulfnd_u _ @ n 2+é n
w1 ds o2 y ds ) 6
(23)
Assuming
n+1; 11-n
2-%2 Y0 g k=2
V% ds

Equation (23) can be reduced to a non-linear differential equation
of the first order foiZ, which can be written as:

o
N

cC|m

(24)

o
n

&2
(%)
(25)
At the stagnation poins =0, U = 0. SincedZ/ds cannot be
infinite, F must be zero at the stagnation point. Hence

(n+1) (2+é

4—(“%))\ (%) —(n+1)A (%) =0 (26)

which gives the values of the pressure gradient parameter
different values o at the stagnation point. Due to limitations
of the method used in this study, no root of Eq. (26) could
be found in the range-12 < A <12 for n < 0.895. Bizzell

and Slattery [9] could calculate the roots fof7858< n < 1.0
only whereas Mizushina and Usui [14] calculated the roots in
the range B95< n < 1.19. In the present study, the valueshof
are calculated fon > 0.895. These values are plotted in Fig. 2
as a function oh.

Following Walz [37], the functiorF can be approximated
by a straight line

F=a—bK (27)

where the constantsandb are determined for each power index
nand are correlated in to single correlations

a=0.45n"1%° and b=6.2n%8 (28)

These correlations are valid between the stagnation peiat Q)
and the point of maximum velocityk(= 0). So Eq. (24) can be
written as

(29)

Using potential flow velocity outside the boundary layer for a cir-
cular cylinder and rearranging the terms, Eq. (29) can be solved
for the local dimensionless momentum thickness:

& [a(sine)”b”

1/(n+1)
D | 2 "Reyp ]

-]Qe<sinz>bfldz (30)

where { is a dummy variable andRe, is the generalized
Reynolds number for a power-law fluid and is defined as

(31)

From Eg. (15), the dimensionless hydrodynamic boundary layer
thickness can be written as

1/(n+1)

nAsin"@

p ’ )\ 1-n
22-nsin20 (2+ 5)

5 | 1
Rey

(32)

Solving Eq. (22) with Eq. (32) and comparing the results with
the numerical values obtained from Eq. (30), one can get the val-
ues of pressure gradient parametdor each position along the
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Figure 2. Behavior of Pressure Gradient Parameter for Power-Law Flu-
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Figure 3. Angles of Separation for Power-Law Fluids.

circumference of the cylinder. These values were fitted by the
least squares method for each power-law indexd are shown

in Fig. 2 for pseudoplastic and dilatant fluids. It shows that the
value of A decreases with increasimg Using analytical defini-
tion of the point of separation, the angle of separation was deter-
mined which depends on the nature of the fluid (pseudoplastic or
dilatant) as well as on the velocity distribution inside the bound-
ary layer. The calculated angles of separation are plotted in Fig.
3 as a function ofi. It shows that the separation angle decreases
with the increase in power-law indexwhich is in accordance
with Serth and Kiser [11].

Fluid Flow

The first parameter of interest is fluid friction which mani-
fests itself in the form of the drag ford&,, whereFp is the sum
of the skin friction dragD s and pressure drap. Skin friction
drag is due to viscous shear forces produced at the cylinder sur-
face, predominantly in those regions where the boundary layer is
attached. In dimensionless form, it can be written as

Tw

Cr=1 2
7PUZ0p

(33)

Using Egs. (9) and (14) and simplifying, we get

1
c 2 [()\+12)sin6]" [sinze(ZJr}—é)l”]n/(mr )
f= i
/(n+1) n-2
Reép 3 2 nAsin'e
(34)
The friction drag coefficient can be defined as
T
Cor = / Cisinedo
0
Os T
- / Cisin@de+ [ CisinBde (35)
0 65

Since the shear stress on the cylinder surface after boundary layer
separation is very small, the second integral can be neglected and
the friction drag coefficient can be written as

6s
Cor = / Crsin0do (36)
0

The calculations were performed for different values ahd the
results are correlated in termsmand the generalized Reynolds
numberReyp in to a single correlation

5.786n0-32

Cof = ——2 —
Rell)/énJrl)

(37)

which gives friction drag coefficient for the flow of a power-law
fluid over a circular cylinder in an infinite medium. It is interest-
ing to note here that fon = 1, Eq. (37) gives the friction drag
coefficient for the flow of Newtonian fluid over a circular cylin-
der (Khan, et al. [3]).

Pressure drag is due to the unbalanced pressures which exist
between the relatively high pressures on the upstream surfaces
and the lower pressures on the downstream surfaces. In dimen-
sionless form, it can be written as

T
Cop= / Cp cos8d (38)
0
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whereC, is the pressure coefficient and can be defined as

Co= 1o 39)

7PUzpp
The pressure differenc&P can be obtained by integratirg
momentum equation with respect @ Following Shibu et al.
[38], the B-momentum equation, for power-law fluids, can be
written as

Oug Ugdug UrUg 109G, 2"
A R =——__" 40
”far+rae+ r 2r66+Rebp (40)
10 16'[99
| [r—za“zw + ?a—e]
where
Trg = 2NErp Tgp = 2N€po
with T 3 1o
— (2m)(n-1)/2 — |9 (Y, 2oU
n=(2n & 2r6r(r)+r66
10ug ur
See:Fa—e T M =¢f +&5p+2¢%
and
U = cosB(1— ) Up = —sinB(1+ %)
In Eq. (40), Shibu et al. [38] scaled the velocity terms us-

2
app’

of the cylinderR, the stress components Ioy(Uapp/R)", and

the second invariant of the rate of deformation ten§bmising
(Uapp/R)2. Using derivatives of the velocity components and
an order-of-magnitude analysis (Khan [34]), Eqg. (40) can be re-
duced to

. a1 . . .
ing Uapp, pressure Wlthé pU radial coordinate by the radius

3n
% = —4sinXB — Rzebp sinB (41)
Integrating it with respect t@, we get
23n
Cp=2(1—cosd)+ 1—cosd 42
p=2( )+ gy (1 C0) (42)

So, the pressure drag coefficient for the cylinder up to the sepa-
ration point will be

Bs
Cop= / CpcosBde (43)
0

This pressure drag coefficient was calculated for different values
of n and correlated in to a single correlation in termsnoénd

Repp:

1.26n32%

Reop (44)

Cpp= +1.28[1—exp(—2.4n)]

The total drag coefficien€p can be written as the sum of both
drag coefficients

1.26n325
Repp

_ 5.786n°32
- /(n+1)
qu)p

Co +1.28/1—exp(—2.4n)]  (45)

which agrees with the drag coefficient of a Newtonian fluie
1) over a circular cylinder (Khan, et al. [3]).

Heat Transfer

The second parameter of interest is the dimensionless average
heat transfer coefficientNup for large Prandtl numbers. This
parameter is determined by integrating Eq. (7) from the cylin-
der surface to the thermal boundary layer edge. Assuming the
presence of a thin thermal boundary lageralong the cylinder
surface, the energy integral equation for the isothermal boundary
condition can be written as

d

ds

oT
_a _

46
. (46)

3t
/ (T —Ta)udn =
0

Using velocity and temperature profiles Eqs. (14) and (16), and
assuming, = 67 /6 < 1, Eqg. (46) can be simplified to

o

5 [U(9)87(A +12)] = 900

(47)

This equation can be rewritten separately for the two regions
(Fig. 1), i.e.

57 5L [U (98¢ (A + 12)] = 900 (48)
for the region I, and
57 51U (982 (Ao +12)] = 900 (49)

for the region Il. Integrating Eqgs. (48) and (49), in the respective
regions, with respect tg, one can obtain local thermal boundary
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layer thicknesses
51 (6 &/ 45F;(n,0) for region |
-
(5
¥/45F,(n,0) for region II
(50)

where the Prandtl numbePry, for a power-law fluid is defined
as

) R e{l)/ (n+D)pel/3 _

_ Rq;’%/(r“rl) (51)

The functiond=; (n, 8) andF;(n, 8) in Eq. (50) are given by

1
n+1
f1(0 220\, sin' 0
Fin8) = —p 1
SiPO(A\+12)2 | ()\1+12
sin20 6
1/(n+1)
f3(0 2”*2n)\zsin“6
Fz(n?e) = ( ) 1-n
Sife | . ()\2+12)
sin20
6
(52)
with
f1(8) = [2sinB(A1+12)d6
05 .:
f2(0) = 8 sinB(A2+12)d6 (53)

f1(8) | fa(6)

f3(0) = M+12 " Ap+12

The local heat transfer coefficients, for the isothermal boundary

condition, in both the regions can be written as

3K 3K
h(0)=—  and i

2o (54)

Thus the dimensionless local heat transfer coefficients, for both

the regions, can be written as

f/i for region |
NU(®)lisotnermar _ 3 | V 45F1(n:6)

/(+1) 5. 1/3 2
R%p Prs s for region ||
45F(n, 6)

(55)

The average heat transfer coefficient is defined as

h— E/Hh(e)de

_ { / h(8)do+ h(e>de} (56)

The integral analysis is unable to predict local heat transfer val-
ues from separation point to the rear stagnation point (second
integral on R.H.S.). The experimentéukauskas andiugzda

[39], Fand and Keswani [40], and Nakamura and Igarashi [41]
among others for Newtonian fluids and Rao [27] for Non-
Newtonian fluids) show that the heat transfer from the rear por-
tion of the cylinder increases with Reynolds numbers. For New-
tonian fluids, Van der Hegge Zijnen [42] demonstrated that the
average heat transferred from the rear portion of the cylinder can
be determined fronNup = 0.001Re&, that shows the weak de-
pendence of average heat transfer from the rear portion of the
cylinder on Reynolds numbers. Same weak dependence can be
observed from Rao [27] experiments for non-Newtonian fluids.
In order to include the share of heat transfer from the rear portion
of the cylinder, the local heat transfer coefficients are integrated
upto the separation point and averaged over the whole surface,
thatis

{ / hi(6)de+ hz(e)de} (57)

Using Egs. (52) - (54), Eq. (57) was solved for different values
of nand the results were correlated in to a single correlation as a
function ofn, Reyp, andPry:

_ 1 1/3
NUD|isothermaI: 0.593n 0'17Rell)/én+ ) Prp/ (58)

For the isoflux boundary condition, the energy integral equation
can be written as

E/eST(T Taudn = -3 (59)
dsfo VM T e

Assuming constant heat flux and thermophysical properties and

using Eqgs. (14) and (17), Eqg. (59) can be simplified to

d Ki
<V (982 LA +12)] = 9op—Cp (60)

Copyright (©) 2005 by ASME



Rewriting Eq. (60) for the two regions in the same way as Eq. Combining the results for both thermal boundary conditions, we
(47), one can obtain local thermal boundary layer thicknesses have
o7, anddr, under isoflux boundary condition. The local surface

temperatures for the two regions can then be obtained from tem- —0.
p res forf 9 NTTS 0.593n %17 for UWT
perature distribution — 5 = (67)
Rey " VPry® | 0.62707019 for uwF
2(J]6T 2(J]6T
AT1(0) = —2 and AT,(0)= ——2 (61
1(9) 3K+ 2(9) 3K+ (61) These correlations agree with the heat transfer coefficients for

a Newtonian fluid § = 1) over a circular cylinder (Khan, et al.

The local heat transfer coefficient can now be obtained from its [3))-
definition as

q RESULTS AND DISCUSSION
h1(6) = AT2(6) and h2(8) = AT,(0) (62) Flow Characteristics _ o
The dimensionless local shear streSs, is plotted in Fig.

) ) 4 for different power-law fluids. It shows th& is zero at the
which give the local Nusselt numbers for the cross flow over a stagnation point for each fluid and reaches a maximum =t

cylinder with constant flux 58
JE for region |
NUD(e)hsoqux . § 4561(na e) (63) 0.45 =
qu)/(nJrl) Prl/3 2 5 3 A — (1JA3943
P 3/~ forregion Il I 1 N
4562(”’6) I /:/ %) '\"\ _._‘_”_ t‘:merical
i ./: g 2\ Schonauer (1964)
03 / Prinng A\ (n=1)
where I jl // % RN
g | j/ B N
1 | i / .70‘”-?.\—\\4: Newtonian Fluids
) ) m 015 -_! /- % \~\.. \\"-_‘4 Rey, = 1000
0 2"4nA1sin'@ o G o\
Gi(n,8) = O +12 1n | il s N
sinB(A1+12) S A+12 E
{\\\I\\\\gzlwwwwlww | IR |
1 0 0.5 1 15 & 25
n+1 0 (rad)
n—2 H
Gz(n, 6) = g-(e) 2" "mAzsin’8 Figure 4. Effect of Power Index N on Skin Friction for a Circular Cylinder.
sin@ | Ao+12\ 1"
sin20
6
] (64) The increase in shear stress is caused by the deformation of
with the velocity profiles in the boundary layer, a higher velocity gra-

dient at the wall and a thicker boundary layer. In the region of de-
creasingCs preceeding the separation point, the pressure gradi-
ent decreases further and finally falls close to zero around the
separation point, where boundary-layer separation occurs. Be-
o- Yond this pointCt remains close to zero up to the rear stagnation
point. It also shows that the skin friction increases with the in-
crease in power-law index Thus pseudoplastic (shear-thinning)
fluids offer less skin friction than dilatant (shear-thickening) flu-
ids which is in accordance with the numerical results of Agarwal
NUDigo flux= O.627n’0'19Re[1)/,§”+1) Pry/® (66) et. al [33]. The results of Newtonian fluids 1) are compared

0 G—T[/Z] (65)

9(8) = [)\1+12+ Ao+ 12

Following the same procedure for the average heat transfer c
efficient as mentioned above, one can obtain the average Nussel
number for an isoflux cylinder as
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with the numerical data of Schauer [43], which shows good
agreement for the entire range.
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Figure 5. Effect of N on Drag Coefficients for a Circular Cylinder.

The variation of the total drag coefficie@t with the power-
law indexn for different Reynolds numbers is illustrated in Fig.
5. It shows that for a given Reynolds number, the drag coefficient
Cp increases linearly wittn and for a given fluid it decreases
with the increase in Reynolds number. The drag coefficients for
a pseudoplastic fluids are found to be lower than dilatant fluids.
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Figure 6. Effect of RQ)p on Drag Coefficients for a Circular Cylinder.

The effect of Reynolds number on the drag coefficients for

10

different fluids is shown in Fig. 6. Since there are no other exper-
imental/numerical results to compare with pseudoplastic/dilatant
fluids, comparisons are made with the experimental results of
Wieselsberger for the ain(= 1) only. The comparison shows
good agreement with the non-Newtonian case.

Heat Transfer Characteristics

The heat transfer parameter (HTIR)JD/R%/é"“) Pr,l)/3 is
presented in Fig. 7 for both the isothermal and isoflux boundary
conditions . It shows that HTP decreases with the increase in
the power law index1. Thus pseudoplastic fluids transfer more
heat than dilatant fluids for the same thermal boundary condi-
tion. The isoflux boundary condition gives a higher heat transfer
coefficient for both types of fluids.
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Figure 7. Comparison of Heat Transfer Parameters for Isothermal and
Isoflux Thermal Boundary Conditions.

The average heat transfer coefficielhus.qp/Pr,%,/3 versus
Reyp are presented in Fig. 8 for different fluids. Experimental
results of Takahashi et al. (1977) and Mizushina et al. (1978) for
different CMC (Carboxy Methyl Cellulose) solutions are com-
pared with the present model for isothermal boundary condition.
The comparison is found to be in good agreement for all fluids.

Figure 9 shows the comparison of the average heat transfer

coefficientsN uD/Pr,l)/3 versusRey, for Newtonian fluids. Here,

the experimental results of Hilpert (1933) and McAdams (1939)
for air are compared with the present model fioe 1. The re-
sults are found to be in good agreement for the entire range of
Reynolds numbers.
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Figure 9. Comparison of Heat Transfer Coefficients for a Circular Cylin-
der.

CONCLUSIONS

An integral approach is employed to investigate the fluid
flow and heat transfer from an isolated circular cylinder sub-
merged in power-law fluids. Closed form solutions are developed
for both the drag and heat transfer coefficients in terms of gen-

tal results for the full laminar range of Reynolds numbers in the
absence of free stream turbulence and blockage effects.
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