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Modeling Transient Conduction in Enclosed Regions Between
Isothermal Boundaries of Arbitrary Shape

Peter Teertstra,* M. Michael Yovanovich,” and J. Richard Culham?*
University of Waterloo, Waterloo, Ontario N2L 3G, Canada

Analytical models are developed to predict dimensionless heat flow rate for transient conduction in the doubly
connected region formed between an arbitrarily shaped, isothermal inner body and its surrounding isothermal
enclosure. This modeling procedure is based on limiting cases and trends identified in the exact solution for the
concentric spheres. Asymptotic solutions for the limiting cases of small and large relative domain size, as well as for
short and long times, are combined to provide comprehensive models applicable to the full range of the independent
parameters. Validation of the models by the spherical enclosure solution and numerical data for the concentric
cubes has shown excellent agreement between the model and the data, within less than a 3% rms difference for

most cases.
Nomenclature

A; = inner body surface area, m?
a = inner sphere radius, m
b = outer sphere radius, m
Cp = specific heat, J/kgK
Fo = Fourier number, at/A;
k = thermal conductivity, W/mK
L = plane wall thickness, m
L = arbitrary scale length, m
m,n, p = fitting parameters
(0] = total heat flow rate, W
o* = dimensionless heat flow rate, Q/[k+/(A;6;)]
r = radial coordinate
r = radius vector
S = conduction shape factor, m
S* = dimensionless shape factor, S/ /A;
s = cube side length, m
T = temperature, K
t = time, s
1% = volume, m?
X = Cartesian coordinate
o = thermal diffusivity, k/pc,,, m*/s
B = relative domain size, Eq. (21)
A = conduction layer thickness, </(a?), m
) = gap spacing, Eq. (19), m
0 = temperature difference, T — Tp, K
0 = density, kg/m’
¢ = dimensionless temperature difference, 6/6;
Subscripts
e = effective, based on concentric spheres

i

inner boundary
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Introduction

OMPLETE full-time solutions for transient conduction in the
doubly connected region formed between an isothermal inner
body and its surrounding isothermal enclosure are of interest to en-
gineers for the development of heat transfer models for electronic
equipment enclosures. These enclosures are typically sealed to pre-
vent damage to the components and circuitry due to moisture or other
contaminants. Although they provide effective protection from the
elements, these enclosures prevent the transfer of heat by convec-
tion from the components directly to the surrounding environment.
Instead, this equipment relies on conduction and convection within
the enclosed fluid to transfer the heat from the heated inner bodies to
the enclosure walls. Analytical models for the heat transfer in these
enclosed environments that can be used during preliminary design
to perform parametric studies are of particular interest to engineers
in the microelectronics and telecommunications industries.
Models for transient conduction in the three-dimensional region
from an isothermal body to its surrounding enclosure for the full
range of time are presently not available for the general case involv-
ing arbitrarily shaped inner and outer boundaries. An exact solution
exists for one simplified geometric case only, the concentric spheri-
cal enclosure, as presented by Carslaw and Jaeger.! The computation
of the transient temperature distribution and subsequent calculation
of the heat flow rate using this series solution may require a large
number of terms for certain combinations of geometry and time.
Exact solutions or approximate methods are currently not available
for problems involving other boundary shapes, such as cuboids or
spheroids, or for problems with different boundary shapes.
Hassani® and Hassani and Hollands® presented an analytical
model for calculating the dimensionless conduction shape factor
in three-dimensional enclosures with uniform gap spacing formed
between boundaries of similar shape. This model is based on a com-
bination of asymptotic solutions for small and large gap spacing, and
a fitting parameter is correlated as a function of the aspect ratio of
the inner body. The Hassani and Hollands® model is applicable only
to steady-state conduction in enclosures with uniform gap spacing,
and transient conduction is not included in their analysis.
Yovanovich et al.* developed a general model for transient con-
duction for isothermal convex bodies of arbitrary shape in a full
space valid for the full range of time. The model is based on a com-
bination of the half-space, transient asymptote with the steady-state
conduction shape factor, where the fitting parameter is described as
a function of aspect ratio. The model was shown to be in excellent
agreement with numerical data for a variety of body shapes over
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the full range of time. It is anticipated that the model developed by
Yovanovich et al.* can be used in the limiting case of large relative
domain size.

The objective of the current study is to develop a simple and
accurate modeling procedure for the dimensionless heat flow rate
within doubly connected regions of arbitrary shape for the full range
of time. The model will be developed using the available exact
solution for transient conduction in concentric spheres and the plane
wall and will be validated using the exact solution for the spherical
enclosure. Accurate numerical data will be generated for concentric
cubes for a wide range of geometry and time, and the model will
validated using these data as well.

Problem Description

The problem of interest in the current study involves a region
bounded internally and externally by arbitrarily shaped, isothermal
boundaries, as shown in Fig. 1a. The initial temperature is isother-
mal, T =Ty, and at some given time the temperature on the inner
boundary is raised to 7; > T, whereas the temperature on the outer
boundary is maintained at its initial value. The governing equation
for this problem is the diffusion equation:

190

v29_a§, t>0 (1)

where the temperature difference 6 is defined as a function of posi-
tion and time by 6 = T'(r, t) — Ty. The initial condition is
t=0, 0=0

everywhere inside the region of volume V. Boundary conditions are
imposed at the inner and outer body surfaces, as follows: For the
inner boundary,

t >0, 6 =6;
and for the outer boundary,
t >0, 6=0

For the special case of concentric spheres shown in Fig. 1b, the
diffusion equation is expressed in spherical coordinates:

19 a0 106
—<r2 ):——, t>0 2)

2 or ar o Jt
where 0 =T (r, t) — Tp. The initial and boundary conditions are

a<r<b, t=0, 6=0

r=>ob, t >0, 0=0

The instantaneous heat transfer rate into the enclosed region is
determined based on the temperature gradient at the inner boundary,

0=—k /fVG-ndAi 3)
Aj

e 5;
— Sp —>
a) b) ©)

Fig. 1 Schematic of enclosure geometries: a) arbitrarily shaped
boundaries, b) concentric spheres, and c¢) concentric cubes.

where n represents an outward directed normal on the inner bound-
ary surface. The instantaneous heat transfer rate is nondimension-
alized with respect to a general length scale £ by

Q7 = OL/kA;0; = L]A; // —V¢ -ndA; 4)
Aj

where ¢ =60/6; is the dimensionless temperature difference. In
Ref. 4, it was shown that the use of the square root of the active
surface area as the characteristic length significantly reduces the
dependence of the solution on geometry, making the model appli-
cable to a variety of body shapes. Based on this previous work, a
length scale based on the inner body surface area is chosen:

L=/4

The dimensionless time based on this scale length is defined as
Fo=at/A; (5)

The relative size of the inner and outer boundaries, sometimes called
the aspect ratio of the enclosure, will be represented by the relative
domain size parameter 8 = f(V, A;), where V is the volume of the
enclosed region. A full definition of 8 will be presented during the
model development, where it will be shown that, for the limiting case
of concentric spheres, the relative domain size parameter reduces to
the radii ratio, 8 =b/a.

Hollow Sphere: Exact Solution

To proceed with the model development, it is helpful to examine
the exact solution for the hollow sphere, as presented by Carslaw
and Jaeger,' for the full range of the dimensionless parameters:

1 <pB <oo 0< Fo < oo

The solution for the transient temperature distribution presented
by Carslaw and Jaeger' can be simplified based on the initial and
boundary conditions to the following:

arb—r 2a A sinnw (r — a) n’m2at
=6, il -
Or[b—a] nr; n (b—a)eXp[ (b—a)2:|

(0)

valid for all time # > 0. The instantaneous heat transfer rate is de-
termined based on the temperature gradient at the inner boundary,

20
0= —kAi—
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r=a

The dimensionless instantaneous heat transfer rate becomes

_2J7p n 4{;1 Xw:exp[ 4n2ﬂ3Fo] ®
n=1

S RS

where 8 = b/a. This series solution was programmed using the com-
puter algebra software Maple,? and sufficient terms were included
in the series to satisfy a convergence tolerance of 1 x 10~% percent
difference between subsequent values. Values for the dimensionless
instantaneous heat flow rate were calculated for 10 values of 8 in
the range 1.1 <f < 50 and for the range of dimensionless time
1 x 107> < Fo < 50. The results of the exact solution for the hollow
sphere are presented in Fig. 2.

The results plotted in Fig. 2 clearly demonstrate that the exact
solution possesses a number of limiting cases as a function of Fo
and B. The short and long time limits can be defined by comparing
the temperature field penetration depth, A = ,/(«t), with the gap
spacing of the enclosure, § = b — a. Converting A and § in terms of
the earlier defined dimensionless parameters yields

A — V/Fo, §— (B—1)/2J7
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Fig. 2 Exact solution for concentric spheres.

For a short time, when /(Fo) < (8 — 1)/2./7, the solutions for
all B approach the dimensionless heat flow rate for the semi-infinite
solid, or half-space solution,

0" — 1/JyaJFo )

For a long time, when /(Fo) > (B — 1)/24/n, the limiting case of
B — oo approaches the steady-state conduction shape factor for the
sphere in a full space:

St =27 (10)

For intermediate values of Fo and 8, the exact solution follows
the transient, full-space sphere solution for v/(Fo) < (8 —1)/2/%
before undergoing a rapid transition to a asymptote corresponding
to steady-state conduction in the spherical annulus,

Ss=2vm[(B-1) (an

Model Development

Given the solution for the concentric spherical enclosure, a model-
ing procedure is proposed for double connected regions of arbitrary
shape based on the assumption that similar solution trends and lim-
its exist for enclosures with nonspherical boundaries. The model is
based on a combination of asymptotic solutions for small and large
relative values of Fo and B, as presented in Fig. 3. Each of the four
corners of the schematic in Fig. 3 represent a different limit for the
solution, as identified for the concentric spheres, and each of these
limits will be incorporated into the proposed model.

To combine the first pair of asymptotic solutions, the short and
long time limits, the composite solution technique of Churchill and
Usagi’ is used,

o =[(¢) +]". 10 (12)

where Q7 and S* are the short time transient solution and the steady-
state conduction shape factor, respectively. This combination of the
transient half-space solution with the steady-state conduction shape
factor formulation is similar to that presented by Yovanovich et al.*
for the full space problem, 8 — oco. However, in this case, the
asymptotic solutions in Eq. (12) are functions of the geometric para-
meter S, as detailed in the following sections.

Short Time Asymptote

For a short time, when the temperature field penetration depth A
is much smaller than the dimensions of the inner body, the prob-
lem is equivalent to transient conduction into a semi-infinite solid,
also called the half-space solution. From the conduction texts'-® the
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Fig. 3 Schematic of solution limits.

transient temperature distribution in a half-space with an isothermal
boundary condition is

¢ = erfe(x /2v/at) (13)

where x represents distance in the direction normal to the surface.
Solving for the dimensionless heat flow rate gives

0*=1/yaJFo (14)

From the concentric sphere solution in Fig. 2, it can be shown that
Eq. (14) is the limit for a very short time for all 8. However, as
B increases, the solution tends to follow the full space transient
solution. From Ref. 4, this limit is shown to be

. m < \ml/m
0; =[(1/vrVFo)" +(53)"] (15)
where S} is the steady-state conduction shape factor for the inner

body. For the limit of the spherical enclosure with 8 — oo, Eq. (15)
is identical to the available exact solution.*

Steady-State Asymptote

Exact solutions for the dimensionless conduction shape factor
S* are available for a limited set of problems, often involving geo-
metrically similar bodies with boundaries conforming to the given
coordinate system. Hassani’> and Hassani and Hollands® present an
analytical model for the dimensional shape factor for enclosures
with uniform gap spacing,

S = (st +s2)"” (16)

where the small and large gap asymptotes are given by

So=vAi 8, S.=351/A

The fitting parameter p is determined from a correlation of numer-
ical results as a function of the inner body surface area, volume,
and aspect ratio. Although applicable for problems with uniform
gap spacing, it is unclear how to define the gap spacing é when the
boundaries are nonconforming.

The proposed model for the conduction shape factor is based on
the available solution for the concentric spheres,

S =dn/(1/a—1/b) (17)

Substituting the gap spacing parameter § = b — a recasts the ex-
pression into a form that illustrates the two limiting cases:
S =4na*/s + 4ma

When the shape factor is nondimensionalized using /A;, the re-
sulting expression is

§*=2Jma/s+ 241 (18)

To apply this solution as a general model for a wide range of geome-
tries, it is necessary to introduce the effective gap spacing §,, a single



TEERTSTRA, YOVANOVICH, AND CULHAM 385

parameter that quantifies the average gap spacing over the entire en-
closed region. For the enclosure with arbitrarily shaped boundaries
shown in Fig. 1a, the relative domain size §, is determined from the
equivalent spherical enclosure by the following procedure. First,
the surface area of the inner body is maintained to determine the
equivalent inner radius,

a:ﬂ/Zﬁ

Then, §, is determined as a function of the equivalent outer radius
when the total enclosed volume V is maintained,

S =b—a
=3/47)5(V +47a®/3)5 —a

= HY[6v/m + (a/m3]F = (a/mt) (19)

In addition to substituting §, and the inner body surface area into
the first term in Eq. (18), the second term is also modified. When it
is recognized that the second term is equivalent to the conduction
shape factor, the shape factor for the inner body in a full space S},
is substituted for this limit. The resulting expression is

)4 1/p
S‘={|: 27 — j| +(S;)p} (20)
(1+6ymV/A2)" -1

The fitting parameter p is included to improve the accuracy of model
for enclosures with large variations in the local gap spacing. How-
ever, for the two cases examined in this work, a superposition solu-
tion using p = 1 provided acceptable accuracy.

Figure 4 compares the predictions of the model for a wide range of
conforming boundaries with the numerical data of Hassani? for con-
centric cylinders and base-attached double cones of aspect ratio 1.
Figure 4 clearly demonstrates the excellent agreement between the
model and the data, with a maximum difference of less than 2%
occurring at the limit of large V1/3//A;.

It is convenient at this time to derive the effective relative domain
size B, for enclosures with arbitrarily shaped boundaries. From the
definition of the effective gap spacing, 8, is determined,

fo=bja= 0. +awja=[6va(v/a)) +1]" @

Based on this definition for the effective relative domain size, the
conduction shape factor expression can be rewritten as

* P «\P11/p
s ={[2v7 /.- D] +(5%)"} (22)
10°
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Fig. 4 Shape factor model validation.

Values for Fitting Parameters

Combining the expressions for the short and long time asymptotes
developed in the preceding sections, Eqgs. (15) and (22), with the
general form of the composite model, Eq. (12), gives the following:

0" = ([(1/VavFo)" + ()]

+H{2vr /-] + (52)}) " 23)

For the purposes of the current study, the fitting parameters on the
short and long time asymptotes, m and p, will be set to one. In
the case of the short time limit, Yovanovich et al.* demonstrated
that the maximum range of the fitting parameter was 0.9 <m < 1.1
and that the use of a superposition solution, m = 1, for bodies with
aspect ratio of approximately unity, results in a maximum error of
less than 4%. For the long time limit, the fitting parameters of both
Hassani? and Hassani and Hollands? are in the range 1 < p < 1.12,
and Teertstra’ confirmed that a maximum error of less than 5% re-
sults from the use of superposition solution, p = 1, for conforming
geometries. Note that changes may be required to these fitting pa-
rameter values in the case of enclosures with large variations in the
local gap thickness or bodies with small or large aspect ratio.
Using superposition for the short and long time asymptotes yields

0 ={(1/vavFo+s.) +[2va/ .~ +5.]"}"
24)

To determine values of the fitting parameter n, the two limiting
cases of small and large enclosures, 8, — 1 and 8, — oo, are exa-
mined separately. For small relative domain size, 8 — 1, the gap
thickness is assumed to be small compared to the inner body di-
mensions, and the problem approaches that of transient conduction
in a plane wall. The diffusion equation for the plane wall in Cartesian

coordinates is
3%0 100 (25
9x2 o ot

with initial and boundary conditions
0<x<L, t=0, 6=0
x =0, t >0, 6 =6,
x=1L, t >0, 6=0

Based on the solution for the transient temperature distribution,
the dimensionless heat flow rate at the heated wall, x =0, can be
determined,

0; =1+ 2exp(-n’n*Foy) (26)

n=1

where the wall thickness L is the scale length for the dimensionless
parameters.

The best value of the fitting parameter » for this limiting case of
B — 1 is determined by comparing the plane wall solution with a
two-term model composed of half-space and steady-state asymp-
totes,

0; = [(1/vay/For) +1]" @7

A fitting parameter of n = 8.5 was found to minimize the maximum
percent difference between the model and the exact solution in the
comparison shown in Fig. 5.

For the limiting case of large relative domain size, 8, — 0o,
Yovanovich et al.* showed that a superposition solution of the half-
space and steady-state asymptotes provides excellent agreement
with the numerical data for the full space. However, if n =1 is
used in the formulation of the model shown in Eq. (24), the long
time results will be in error at the limit of large B,. To correct this,
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Fig. 6 Fitting parameter correlation for 1< 3 < 10.

an alternate model formulation is recommended for large values of
the relative domain size, §, > 10,

0" = (1/VavFo) + 27 /B — D+ s.]'}" @8

For the remaining values of the relative domain size, 1 < 8, < 10,
optimized values of the fitting parameter n are determined in the
following manner. The model is applied to the concentric spheri-
cal enclosure for each of the values of 8 shown in Fig. 2, and the
results are compared with the exact solution. Values of the fitting pa-
rameter are then determined that minimize the maximum difference
between the model predictions and the exact solution for each case.
The resulting values, including the limit for 8, — 1, are normalized
using the plane wall fitting parameter n = 8.5. The inverse of the
normalized fitting parameter, 8.5/n, is correlated as a function of
1/B., as shown in Fig. 6, and the resulting linear relationship can be
used to predict n for the range of relative domain size 1 < 8, <10,

n =8.58, (29)

Model Summary

The models proposed in this work for transient dimensionless
heat flow rate within doubly connected regions of arbitrary shape
for the full range of time are summarized as follows:

0 ={(1/vavFo+s.)™"

Y 7858 1/(8.58)
+2vm /B -+ 8]} (30)
which is valid for 1 < 8, <10

Q" =1/VavFo+2Ja [(B.— 1)+ 5, (31)

which is valid for 8, > 10 where

B = [ovz(v /A7) +1]" (32)

Model Validation

The proposed models for dimensionless transient heat flow rate
from Egs. (30) and (31) are validated using the exact solution for the
concentric spheres and numerical data from finite element compu-
tational fluid dynamics (CFD) simulations of a concentric, cubical
enclosure.

Figure 7a presents a comparison of the model and the exact solu-
tion for the spherical enclosure for relative domain size in the range
1.1 < B < 10. Figure 7a shows the excellent agreement between the
model and the exact solution for the full range of Fo and 8 < 10, with
maximum percent differences and rms differences of less than 0.3%.

The superposition solution recommended for g > 10, Eq. (31),
is compared with the exact solution for the concentric spheres in
Fig. 7b for the full range of Fo for 8 = 10 and 50. From Fig. 7b, it can
be shown that the trends of the superposition model for 8 = 10 differ
from the exact solution in the transition region, yielding a maximum
percent difference of 9%. However, for the relative domain size

- — — — - Exact Solution, Eq. (8)
Model, Eq. (30)

s ol el el o o ol 1l

100 = -y 3 2 -1 0 1 2
10 10 10 10 10 10 10 10
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Eq. (8)
[ Model, Eq. 31 { 10
odel, Bq- Gy .. 50
100 el ol el el
10° 10 10° 10° 10 10° 10’ 10°
b) Fo

Fig. 7 Model validation, concentric spheres: a) 1.1<3 <10 and
b) 3>10.
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B =50, the maximum percent difference is reduced to less than 2%,
with an rms difference of approximately 1%.

In the second phase of the validation, the model is compared
with numerical simulation results for the concentric cubical enclo-
sure shown in Fig. 1¢. These numerical simulations were performed
using the commercial, finite element based CFD package Icepak®
for the range of relative domain size 1.15 < 8, <44.9. The solu-
tion domain for the numerical simulations utilizes one-eighth sym-
metry to reduce the number of elements required and to improve
solution time. Adiabatic boundary conditions are imposed at the
three symmetry planes, whereas the remaining domain boundaries

10° -
| e
\.‘
. %
A 10‘ I~ ..\\
[ "o.
I s,/s; B ®e-00e
[ Numerical Data { = 12 118
5 45
I — 12 1.15
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Fig. 8 Model validation, concentric cubes: a) 3, =1.15,4.5,b) 3, =14,
9, and c¢) (3, =1.82, 44.9.

are isothermal at the sink temperature, 7, =20°C. An isothermal
boundary condition of 7; =40°C is applied on the inner cube. The
size of the outer boundary was fixed, so =0.1 m, whereas s; was
varied in six steps to achieve the size length ratio values

so/s; =1.2,1.5,2,5,10, and 50

Constant property values for air at standard temperature and pressure
were specified throughout the solution domain. Transient solutions
were performed for 1000 iterations for three different time inter-
vals, At =1, 10, and 100 s, to achieve a range of Fo spanning three
decades. A grid convergence study was performed for the limit-
ing case of steady-state conduction, and the resulting discretization
levels were maintained throughout all subsequent calculations. The
results of the numerical simulations were reported by the software
in terms of total heat flow rate, which was nondimensionalized by

0" = 0 /kvV6s:(T; — Ty) (33)

Figures 8a—8c compare the predictions of the models for the con-
centric cubes with the numerical data for six B, values. The proposed
model for the range 1 < 8, < 10 from Eq. (30) is used in all cases,
with the exception of 8, =44.9 in Fig. 8c, where the superposition
solution, Eq. (31), is used instead. Figures 8 demonstrate the excel-
lent agreement between the proposed models and the numerical data
for all values of Fo and 8, examined in this work, with maximum
percent differences of less than 5% and rms differences of less than
3%.

Summary

Models have been developed to predict dimensionless transient
heat flow rate within doubly connected regions of arbitrary shape for
the full range of time. These models are based on trends and limits
noted in the exact solution of the concentric spherical enclosure
and combine asymptotes for limiting cases of geometry and time,
nondimensionalized by B, and Fo, respectively. Validation of the
models with both the exact solution for the spherical enclosure and
numerical data for the concentric cubes shows excellent agreement
of less than 3% rms for most cases.

A number of simplifications have been made in the assumption of
fitting parameter values m = p = 1 for the transient and steady-state
asymptotes in the model. Additional numerical studies are clearly
warranted to validate the effect of the model for nonconforming
boundary shapes, inner bodies with aspect ratios substantially dif-
ferent from unity, and enclosures with a large variation in the local

gap spacing.
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