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ABSTRACT

Transient heat conduction in solid prismatic bars of
constant cross-sectional area having uniform heat genera-
tion and unsteady momentum transport in infinitely long
ducts of arbitrary but constant cross-sectional area are ex-
amined. In both cases the solutions are mathematically
modeled using a transient Poisson equation. By means of
scaling analysis a general asymptotic model is developed for
an arbitrary non-circular cross-section. Further, by means
of a novel characteristic length scale, the solutions for a
number of fundamental shapes are shown to be weak func-
tions of geometry. The proposed models can be used to
predict the dimensionless mean flux at the wall and the
area averaged temperature or velocity for the tube, annu-
lus, channel and rectangle for which exact series solutions
exist. Due to the asymptotic nature of the proposed mod-
els, it is shown that they are also applicable to other shapes
at short and long times for which no solutions or data exist.
The root mean square (RMS) error based on comparisons
with exact results is between 2.2-7.6 percent for all data
considered.

KEYWORDS: Unsteady Viscous Flow, Unsteady Heat
Conduction, Modelling, Asymptotic Analysis, Scale Anal-
ysis, Poisson Equation

NOMENCLATURE

A = area, m2

A0, A∞ = closure constants
B0, B∞
a, b = major and minor axes of rectangle, m

= outer and inner radii, m
Dh = hydraulic diameter, ≡ 4A/P
fReL = friction factor Reynolds number group

≡ 2PoL
G = source parameter
J0(·) = Bessel function of first kind order zero

∗Assistant Professor
†Distinguished Professor Emeritus, Fellow ASME

k = thermal conductivity, W/mK
L = duct or channel length, m
L = arbitrary length scale, m
m,n = series indices
n, p = asymptotic correlation parameters
n = directed normal, m
N = number of sides of a polygon
p = pressure, Pa
P = perimeter, m
PoL = Poiseuille number, ≡ τL/µw
qs = surface heat flux, W/m2

r = radial coordinate, m
r∗ = radii ratio, b/a
ReL = Reynolds number, ≡ wL/ν
s = arc length, m
S = volumetric heat generation, W/m3

t = time, s
t? = dimensionless time,≡ βt/L2

w = velocity, m/s
w = average velocity, m/s
x, y, z = cartesian coordinates, m
Y0(·) = Bessel function of second kind order zero

Greek Symbols

α = thermal diffusion coefficient, m2/s
β = general diffusion coefficient, m2/s
δ = boundary layer thickness, m
δn = eigenvalue
ε = aspect ratio, b/a
φ = independent variable, θ or w

φ? = dimensionless transport quantity, ≡ φ/GL2

φn = gradient of φ, ≡ ∂φ/∂n
γ = transport coefficient, k or µ
η = similarity variable
λmn = eigenvalue
µ = dynamic viscosity, Ns/m2

ν = kinematic viscosity, m2/s
θ = temperature excess, K
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ρ = density, kg/m3

% = dimensionless radial position, r/a
ψ = flux, W/m2 or N/m2

φ? = dimensionless flux, ≡ φnP/AG
τw = wall shear stress, Pa

Subscripts

s = surface
w = wall
∞ = steady state value
L = based upon the arbitrary length L

Superscripts

(·) = mean value
(·)? = dimensionless value

INTRODUCTION

This paper is concerned with the analysis of unsteady
transport of momentum due to a suddenly imposed con-
stant pressure gradient or unsteady heat conduction due to
a uniformily distributed heat source in circular and non-
circular geometries.

The viscous transport problem which is most often
found in advanced level fluids texts [1-5], is concerned with
start up flow in circular and non-circular tubes and chan-
nels. The solution for a tube was originally found by Szy-
manski [6] in 1932. In addition to the circular tube, solu-
tions for the parallel plate channel [7,8], circular annulus [9],
and rectangle [10], are also available in the fluids literature.
The solution for the channel is discussed in Rouse [7] and
Arpaci and Larsen [8] with no reference to its origins. The
solution may be traced back to Lamb [11] as early as 1927.
Lamb [11] used a Fourier series method to obtain the so-

lution, but later Bromwich [12] obtained a similar solution
using Laplace transforms [12,13]. The solution for the cir-
cular annulus was obtained by Müller [9] in 1936. While the
solution for a rectangular channel may be found in Erdo-
gan [10], but elements of its solution are discussed in earlier
mathematical works [14-17]. The solution for the rectangle
as presented by Erdogan [10] is somewhat complex and has
been re-solved using Fourier transforms [18-20] as part of
the present work to provide a more compact form.

The viscous transport problem also has an analogous
conterpart in conduction heat transfer. The temperature
field which results from a uniformily distributed heat source
which is suddenly turned on is governed by a similar dif-
ferential equation and boundary and initial conditions [21].
Carslaw and Jaeger [21] discuss both the plane wall and
circular cylinder solutions for transient conduction with a
constant uniform heat source. A solution for the annular
cylinder is not presented, but cited by Thews [22]. No ref-
erence to any solution for a rectangular domain is made.

The paper reviews the aforementioned analytical solu-
tions and considers the characteristics of these solutions.
Simple models are proposed for calculating these charac-
teristics which make computations more amenable. Two
advantages of these compact models will become appar-
ent. First, the available solutions are in the form of infinite
series. In the case of the rectangle a double inifinite se-
ries is required. Further, the solutions for the cylinder and
annulus involve Bessel functions and the eigenvalues must
be numerically computed from expressions involving these
functions. Second, the analysis will show that the results
are applicable to other useful geometries for which no so-
lutions exist, i.e. the elliptic duct, triangular duct, and
polygonal ducts (refer to Fig. 1).
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With respect to the problem of interest, two funda-
mental quantities are useful to the engineer for modeling
the transient response of a system. One is the dimension-
less area averaged velocity or temperature (potential), and
the other is the dimensionless perimeter averaged wall shear
or heat flux (gradient of potential). Since the solutions to
these problems involve infinite single and double series, it is
desirable to have compact models for computing the desired
parameters. Simple models will be proposed for both the
dimensionless average potential and dimensionless average
gradient of the potential.

In general, the results presented in this work are ap-
plicable to any unsteady Poisson equation with constant
uniformily distributed source, constant physical properties,
and homogeneous Dirichlet boundary conditions. Next the
mathematical statement for each problem is discussed and
presented in a general form.

PROBLEM STATEMENT

The problem of interest is characterized by the follow-
ing general Poisson equation:

1

β

∂φ

∂t
= G + ∇2φ (1)

which is subject to the boundedness condition along the
axis of the geometry, φ 6= ∞, homogeneous Dirichlet con-
ditions at the boundary, φ = 0, and the initial condition
φ = 0, when t = 0. The system is shown in Fig. 2. It con-
sists of an infinitely long duct or cylinder of arbitary but
constant cross-sectional area, A, bounded by perimeter, P .

It is of interest to obtain the area mean potential, ob-
tained by integrating the solution for φ over the cross-
sectional area:

φ(t) =
1

A

∫ ∫

A

φdA (2)

Also, of interest is the perimeter averaged or mean gra-

dient at the surface,
∂φ

∂n
≡ φn:

ψ(t) =
1

P

∮

γ
∂φ

∂n
ds = γφn (3)

which is related to the momentum flux or heat flux through
the appropriate thermophysical property for γ using New-
ton’s law or Fourier’s law. The two fundamental transport
problems are summarized below in Table 1

Table 1
Summary of Variables

Problem φ β G γ ψ

Momentum w ν
1

µ

∆p

L
µ τw = µ

∂w

∂n

Conduction θ α
S
k

k qs = k
∂θ

∂n

Fig. 2 - System Under Consideration.

Unsteady Viscous Transport The momentum trans-
port or impulsively started flow problem is often classified
in some texts as Rayleigh flow, Telionis [4]. In other texts
it is referred to as startup flow or the commencement of
Poiseuille flow. In this problem, the source is defined as

G =
1

µ

∆p

L
. The dimensionless mean velocity is:

w? =
w

L2
1

µ

∆p

L

=
φ

GL2
= φ? (4)

While the dimensionless momentum flux (or shear
stress) at the surface is defined with respect to the steady
state value:

τ? =
τw

τ∞
(5)

where

τ∞ =
A

P

∆p

L
(6)

is obtained from the steady state force balance.
This leads to the following result for the dimensionless

momentum flux or wall shear:

τ? =
τw

A

P

∆p

L

=
µφn

A

P

∆p

L

=
φn

A

P
G

= ψ? (7)

Unsteady Heat Conduction In the case of unsteady
heat conduction with a source, similar dimensionless groups
may be defined. In this problem, the source is defined as
G = S/k. The dimensionless mean temperature in the
cross-section is:

θ? =
θ

L2
S
k

=
φ

GL2
= φ? (8)

While the dimensionless heat flux at the surface is de-
fined with respect to the steady state value:

q? =
qs

q∞
(9)

where

q∞ =
A

P
S (10)

is obtained from the steady state heat balance.
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This leads to the following result for the dimensionless
heat flux:

q? =
qs

A

P
S

=
kφn

A

P
S

=
φn

A

P
G

= ψ? (11)

In later sections, we will examine exact results and ap-
proximate results for the two dimensionless quanties, φ?

and ψ?. In the next section, we use scale analysis to ob-
tain the order of magnitude behaviour for both quantities
in terms of asymptotic limits.

SCALE ANALYSIS

In this section, we will examine what information the
method of scale analysis [23] may provide. Recall, the
transport equation:

1

β

∂φ

∂t
︸ ︷︷ ︸

Storage

= G
︸︷︷︸

Generation

+ ∇2φ
︸︷︷︸

Diffusion

(12)

This equation represents a balance of three quantities:
storage, generation, and diffusion. There are three distinct
flow regions in this problem that may be considered. Fully
developed flow exists after a very long time, and at short
times, there exists a potential core and a very thin bound-
ary layer region. Each of these regions may be analyzed us-
ing scale analysis. The following scales will be used: φ ∼ φ,
t ∼ t, and ∇2 ∼ 1/L2 for long time and ∇2 ∼ 1/δ2 for short
time. Here, L is as yet undetermined characteristic length
scale related to the geometry and δ is the boundary layer
thickness or penetration scale associated with early times.

First for long times t → ∞, or fully developed flow, the
balance between generation and diffusion leads to ∇2 ∼
1/L2. This gives

φ

L2
∼ G (13)

or

φ ∼ GL2 (14)

or

φ?
∞ =

φ

GL2
∼ 1 as t → ∞ (15)

Next, for short times t → 0, the balance is between
storage and generation, or considering the potential core,
this leads to

1

β

φ

t
∼ G (16)

or

φ ∼ Gβt (17)

or

φ?
0
∼ βt

L2
∼ t? as t → 0 (18)

Next, in the boundary layer region, the balance be-
tween storage and diffusion leads to ∇2 ∼ 1/δ2. This gives

1

β

φ

t
∼ φ

δ2
(19)

or
δ ∼

√

βt (20)

which is the intrinsic penetration depth.
The flow becomes fully developed when δ ∼ L, such

that

βt ∼ L2 (21)

or

t? ∼ βt

L2
∼ 1 (22)

Finally, we wish to develop expressions for the mean
flux at the surface defined as:

ψ = γ
∂φ

∂n
(23)

We must consider the two limiting cases of short time
and long time. For long time, t → ∞, the flux becomes:

ψ ∼ γ
φ

L (24)

We may also relate the flux to the source G for fully
developed flows, where

ψ∞ =
A

P
Gγ (25)

Thus, if we define ψ? = ψ/ψ∞, we obtain

ψ?
∞ =

φ
(

A

P
GL

) ∼ 1 as t → ∞ (26)

Finally, for short times, t → 0, the flux becomes

ψ ∼ γφ

δ
(27)

Also, from the transport equation we see that

φ

δ2
∼ G (28)

or, after combining Eqs. (27) and (28):

ψ ∼ γGδ (29)

Finally defining ψ? as before, we obtain

ψ?
0
∼ δ

A/P
∼

√
t?L

A/P
as t → 0 (30)

It is clear from scaling analysis, that two distinct char-
acteristics are present. These are the dimensionless mean
potential, φ? and dimensionless mean surface flux, ψ?.
Each has the following asymptotic behaviour:

φ? =







A0t
? t? → 0

A∞ t? → ∞
(31)

and

ψ? =







B0

√
t? t? → 0

B∞ t? → ∞
(32)
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Later, an approximate model is obtained by superpos-
ing these asymptotes. But first we examine the exact so-
lutions for each of these regions in order to determine the
closure constants A0, A∞, B0, and B∞.

ASYMPTOTIC BEHAVIOUR

The exact asymptotic behaviour for small and large
times may now be examined for each dimensionless quan-
tity of interest.

Long Time - t → ∞ For long time, t → ∞, the flow
is characterized by a balance between generation and diffu-
sion. This problem has been analyzed extensively for mo-
mentum transport and solutions to some forty configura-
tions may be found in Shah and London [24]. The results
are usually presented in the form of the dimensionless group
fRe, the Fanning friction factor Reynolds number product
defined as:

fReL
2

=
τ∞L
µw

=
ψ∞L
γφ

= PoL (33)

where Po is referred to in the fluids literature as the
Poiseuille number [4].

We can further introduce the source term through the
fully developed flow balance Eq. (25) and obtain:

PoL =
ψ∞L
γφ

=

A

P
GL

φ
(34)

Rearranging, for φ and using the definition of the di-
mensionless mean potential, Eq. (4) or Eq. (8), we obtain

φ? =
A/P

PoLL
(35)

which gives

A∞ =
A/P

PoLL
(36)

Finally, by virtue of the definition of the dimension-
less flux, Eq. (5) or Eq. (9) and the value for ψ∞, the
dimensionless asymptotic limit for ψ? is:

ψ? = 1 (37)

which gives

B∞ = 1 (38)

Short Time - t → 0 For short times, t → 0, the trans-
port is characterized by a balance between generation and
storage. The equation of transport which may be solved in
the potential core when δ is small is:

1

β

∂φ

∂t
= G (39)

This may be integrated and solved with the initial con-
dition φ(0) = 0 to give:

φ(t) = βtG ≈ φ(t) (40)

When non-dimensionalized, the solution for short time
in the potential core is:

φ? =
βt

L2
= t? (41)

which gives

A0 = 1 (42)

The short time flux may be found by considering the
classic Stokes solution for momentum transport or heat con-
duction into a half space. The solution for the field resulting
from a step change at the surface is:

φ = φoerfc(η) (43)

where η = x/2
√

βt.

Fig. 3 - Mean Boundary Layer Thickness.

The result for the boundary layer thickness which ac-
counts for the mean penetration of the field from the surface
to the potential core, i.e. the area under the curve defined
by Eq. (43), may be written as [25]:

δφo = 2
√

βt

∫ ∞

0

φoerfc(η) dη (44)

which gives

δ =
2√
π

√

βt ≈ 1.128
√

βt (45)

Equation (45) accounts for the mean depth of pene-
tration of the field to the potential region. Although the
potential core is in a state of change, the process is still ap-
plicable, since we are interested in the characteristics of the
boundary layer which is bounded by the surface and the
potential core. In the case of momentum transport, this
boundary layer defines the total mass flow, Uδ, at any time
which results from the impulsive motion of an infinite flat
plate. In the case of heat conduction, the boundary layer
defines the total energy stored in the field, θoδρCpA, at
any time after the step change has occurred. This is shown
graphically in Fig. 3. It may be viewed as the accumulated
mean boundary layer thickness. Similar results may also be
obtained by integrating the boundary flux between t = 0
and an arbitrary time t = t.

Using this result in Eq. (30) gives:
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ψ? =
2√
π

PL
A

√
t? (46)

which gives

B0 =
2PL√

πA
(47)

These exact limits may now be combined in a simple
manner using an asymptotic correlation method.

COMPACT MODELS

Compact models may now be developed using the
asymptotic correlation method proposed by Churchill and
Usagi [26]. The asymptotic limits may now be combined
to develop a simple compact model for each dimensionless
quantity of interest.

y? = [(y?
0
)n + (y?

∞)n]1/n (48)

The form for φ? and ψ? is shown in Fig. 4, after
Yovanovich [27]. This type of behaviour is characterized
by using a negative value for the fitting parameter n, in
Eq. (48).

Fig. 4 - Asymptotic Model Development.

The models of interest may now be written in the fol-
lowing forms:

φ? =

[

(t?)n +

(
A/P

LPoL

)n]1/n

(49)

and

ψ? =

[(
2PL√

πA

√
t?

)p

+ 1

]1/p

(50)

The values of n and p may now be determined from
comparisons with data obtained from the exact solutions
to a number of geometries. The fitting parameters may be
obtained by either applying Eqs. (49) and (50) at a single

known point in the transition region or by using multiple
points and minimizing the root mean square error. In the
present work, the latter method is used to determine the
fitting parameters.

Characteristic Length Scale We shall now consider
the various choices for the characteristic length scale L. The
simplest choice depending on geometry is to use the intrin-
sic length scale of the geometry, i.e. L = a for a plane wall
of width 2a and cylinder of diameter 2a. However, when
dealing with more complex shapes, the choice for momen-
tum transport is often the hydraulic diameter defined as
L = 4A/P . More recently, Yovanovich and Muzychka [28]
and Muzychka and Yovanovich [29] have proposed using
L =

√
A with much success in reducing Poiseuille numbers

to a simple function of duct aspect ratio for momentum
transport.

Examination of the proposed compact models suggests
using L = 4A/P since it simplifies the form of the models.
However, L =

√
A offers the advantage that the Poiseuille

number is a weak function of shape and can be easily pre-
dicted for more complex shapes. The important result of
Muzychka and Yovanovich [29] is that the Poiseuille num-
bers may be accurately predicted for the elliptic, rectangu-
lar, annular and polygonal shapes using:

fRe√A = 2Po√A =
12

√
ε(1 + ε)

[

1 − 192ε

π5
tanh

( π

2ε

)]

(51)
The above expression represents a single term approxi-

mation for the rectangular duct provided 0 < ε ≤ 1, where
ε = b/a is the duct aspect ratio. Typical results are given in
Tables 2 and 3 for the elliptic, rectangular, and polygonal
geometries. Graphical results are provided in Figs. 5 and

6. In the case of the circular annulus ε ≈ (1 − r∗)

π(1 + r∗)
where

r∗ = b/a is the radii ratio of the annulus.

Table 2
fRe Results for Elliptical and Rectangular

Geometries [24]

fReDh
fRe√

A

ε = b/a Rect. Ellip.
fReR

fReE
Rect. Ellip.

fReR

fReE

0.01 23.67 19.73 1.200 119.56 111.35 1.074
0.05 22.48 19.60 1.147 52.77 49.69 1.062
0.10 21.17 19.31 1.096 36.82 35.01 1.052
0.20 19.07 18.60 1.025 25.59 24.65 1.038
0.30 17.51 17.90 0.978 20.78 20.21 1.028
0.40 16.37 17.29 0.947 18.12 17.75 1.021
0.50 15.55 16.82 0.924 16.49 16.26 1.014
0.60 14.98 16.48 0.909 15.47 15.32 1.010
0.70 14.61 16.24 0.900 14.84 14.74 1.007
0.80 14.38 16.10 0.893 14.47 14.40 1.005
0.90 14.26 16.02 0.890 14.28 14.23 1.004
1.00 14.23 16.00 0.889 14.23 14.18 1.004
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Table 3
fRe Results for Polygonal Geometries [24]

N fReDh

fReP

fReC
fRe√

A

fReP

fReC

3 13.33 0.833 15.19 1.071
4 14.23 0.889 14.23 1.004
5 14.73 0.921 14.04 0.990
6 15.05 0.941 14.01 0.988
7 15.31 0.957 14.05 0.991
8 15.41 0.963 14.03 0.989
9 15.52 0.970 14.04 0.990
10 15.60 0.975 14.06 0.992
20 15.88 0.993 14.13 0.996
∞ 16 1.000 14.18 1.000

Proposed Compact Models We now consider two pos-
sibilities for the characteristic length scale, L, and develop
compact models for each parameter of interest.

Hydraulic Diameter, L = 4A/P When the hydraulic
diameter is used as a characteristic length scale Eqs. (49)
and (50) become:

φ? =

[

(t?)n +

(
1

4PoDh

)n]1/n

(52)

and

ψ? =

[(
8√
π

√
t?

)p

+ 1

]1/p

(53)

Square Root of Area, L =
√

A When the square root
of area is used as a characteristic length scale Eqs. (49) and
(50) become:

φ? =

[

(t?)n +

(√
A/P

Po√A

)n]1/n

(54)

and

ψ? =

[(

2P/
√

A√
π

√
t?

)p

+ 1

]1/p

(55)

The paramater P/
√

A is an important geometric scal-
ing factor. It is discussed by Yovanovich and Muzychka
[28] and Muzychka and Yovanovich [29]. Further, Bejan
[30] also showed its importance in a channel flows using his
constructal theory of nature. The fully developed Poiseuille
number has the following relationship to this geometric pa-
rameter:

Po√A = PoDh

P

4
√

A
(56)

Fig. 5 - fRe for Elliptic and Rectangular Ducts.

Fig. 6 - fRe for Some Other Duct Shapes.

COMPARISON WITH KNOWN SOLUTIONS

Comparisons will now be made with four known ana-
lytical solutions: the plane channel, the circular tube, the
rectangle, and the circular annulus. Each of these four ge-
ometries are closely related. The annulus contains as spe-
cial limits the tube and the channel results, and the rectan-
gle also contains the channel limit. Further, the rectangle
contains the square duct which is one of the polygonal ducts
which has a strong similarity to the tube and other polyg-
onal shapes when appropriately non-dimensionalized, see
Table 3. In the subsequent sections, Eqs. (52) and (53) are
used in presenting the model and data comparisons graph-
ically.

Parallel Plate Channel The solution for the plane
channel of width 2a as found in [7,8,11-13,21] is:

φ(y, t) =
Ga2

2

[(

1 − y2

a2

)

−

4

∞∑

n=1

sin(δn)

δ3
n

cos(δny/a) exp(−δ2

nβt/a2)

] (57)
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where

δn =
(2n − 1)π

2
(58)

Fig. 7 - φ? for the Plane Channel.

Fig. 8 - ψ? for the Plane Channel.

It is of interest to the engineer to obtain the area mean
value of φ as a function of time. This may be obtained by
integrating the solution across the channel:

φ =
1

2a

∫ a

−a

φ(y, t)dy (59)

Evaluating the integral and simplifying yields

φ = Ga2

(

1

3
− 2

∞∑

n=1

exp(−δ2

nβt/a2)

δ4
n

)

(60)

Finally, the flux may be calculated from:

ψ = −γ
∂φ

∂y

∣
∣
∣
∣
y=a

(61)

or

ψ = γGa

(

1 − 2
∞∑

n=1

exp(−δ2

nβt/a2)

δ2
n

)

(62)

Equations (60) and (62) have been used to generate
data for comparisons to the proposed models. Over the

range of 0.0001 < t? < 10, 50-200 terms were used in the
series as required to achieve convergence. The optimal fit-
ting parameter for φ? was found to be n = −1.3 with a root
mean square error (RMS) of 6.03 percent. While for ψ? the
value was found to be p = −6 with a 0.262 percent RMS.
Graphical results are shown in Figs. 7 and 8.

Fig. 9 - φ? for the Circular Tube.

Fig. 10 - ψ? for the Circular Tube.

Circular Tube The solution for the circular tube of
diameter 2a was obtained by Szymanski [6] using the sepa-
ration of variables method. The solution is widely discussed
in many advanced level fluid texts [1-5] and a heat conduc-
tion text [21]. The solution is:

φ(r, t) =
Ga2

4

[(

1 − r2

a2

)

−

8

∞∑

n=1

Jo (δnr/a)

δ3
nJ1(δn)

exp(−δ2

nβt/a2)

] (63)

where δn are the positive roots of

J0(δn) = 0 (64)

The mean potential may be found by integrating over
the cross-sectional area

8



φ =
2

a2

∫ a

0

φ(r, t)rdr (65)

or

φ = Ga2

(

1

8
− 4

∞∑

n=1

exp(−δ2

nβt/a2)

δ3
n

)

(66)

Finally, the shear stress is found from

ψ = −γ
∂φ

∂r

∣
∣
∣
∣
r=a

(67)

or

ψ = γGa

(

1

2
− 2

∞∑

n=1

exp(−δ2

nβt/a2)

δ2
n

)

(68)

Equations (66) and (68) have been used to generate
data for comparisons to the proposed models. Over the
range of 0.0001 < t? < 10, 50-200 terms were used in the
series as required to achieve convergence. The optimal fit-
ting parameter for φ? was found to be n = −1.2 with an
RMS error of 6.94 percent. While for ψ? the value was
found to be p = −2.8 with an RMS error of 2.72 percent.
Graphical results are shown in Figs. 9 and 10.

Rectangular Channel A search of the literature for a
solution for the rectangular channel revealed a form in Er-
dogan [10]. The solution is quite cumbersome due to the
nature of the approach taken to obtain it. The present au-
thors have obtained the solution using the integral trans-
form method by means of a double finite sine transform
[18-20]. The solution for a rectangle having dimensions a, b
with the origin placed in the lower left corner may be writ-
ten in the following form:

φ(x, y, t) =
4

ab

∞∑

m=1

∞∑

n=1

Amn[1 − exp(−λ2

mnβt)]

λ2
mn

∗

sin(mπx/a) sin(nπy/b)

(69)

where

Amn =
Gab[(−1)m − 1][(−1)n − 1]

mnπ2
(70)

and

λ2

mn =
m2π2

a2
+

n2π2

b2
(71)

The mean potential at any time is obtained from:

φ =
1

ab

∫ b

0

∫ a

0

φ(x, y, t)dxdy (72)

which gives:

φ =

4

ab

∞∑

m=1

∞∑

n=1

Amn[1 − exp(−λ2

mnβt)][(−1)m − 1][(−1)n − 1]

mnπ2λ2
mn

(73)

Fig. 11 - φ? for the Rectangular Channel.

Fig. 12 - ψ? for the Rectangular Channel.

The mean wall flux is obtained from:

ψ =
1

a + b

[
∫ b

0

γ
∂φ

∂x

∣
∣
∣
∣
x=0

dy +

∫ a

0

γ
∂φ

∂y

∣
∣
∣
∣
y=0

dx

]

(74)

where
∫ b

0

γ
∂φ

∂x

∣
∣
∣
∣
x=0

dy =

4γ

a2

∞∑

m=1

∞∑

n=1

Amnm[1 − exp(−λ2

mnβt)][1 − (−1)n]

nλ2
mn

(75)

and
∫ a

0

γ
∂φ

∂y

∣
∣
∣
∣
y=0

dx =

4γ

b2

∞∑

m=1

∞∑

n=1

Amnn[1 − exp(−λ2

mnβt)][1 − (−1)m]

mλ2
mn

(76)

Equations (73) and (74) have been used to generate
data for comparisons to the proposed models. Over the
range of 0.0001 < t? < 10, 50-200 terms were used in the
series as required to achieve convergence. Values for n and
p are shown in Table 4 for various channel aspect ratios.
Graphical results are shown in Figs. 11 and 12.
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Table 4
Results for Rectangular Channel

b/a PoDh
n RMS p RMS

0 12 -1.2 6.1 -6 1.8

1/20 11.24 -1.2 6.3 -4.5 2.2

1/10 10.58 -1.2 6.1 -4 2.7

1/6 9.85 -1.2 6.4 -3.5 3.3

1/3 8.54 -1.1 6.7 -2.8 4.0

1/2 7.77 -1.1 6.9 -2.5 4.4

1 7.12 -1.1 6.9 -2.4 4.3

Circular Annulus The solution for the circular annu-
lus with inner radius b and outer radius a, was obtained by
Müller [9] using the separation of variables method. The
solution which also contains Bessel functions, is much more
complex than that for the tube. The final solution for the
field is:

φ(r, t) =
Ga2

4

[

1 − %2 − (1 − r∗2) ln(1/%)

ln(1/r∗)

]

−

πa2G
∞∑

n=1

J0(δn)[J0(%δn)Y0(r
∗δn) − Y0(%δn)J0(r

∗δn)]

δ2
n[J0(δn) + J0(r∗δn)]

∗

exp(−δ2

nβt/a2)

(77)
where r∗ = b/a, % = r/a, and the eigenvalues, δn, are com-
puted numerically from

J0(δn)Y0(r
∗δn) − J0(r

∗δn)Y0(δn) = 0 (78)

The functions J0(·) and Y0(·) are Bessel functions of the
first and second kind, respectively, of order zero. They are
easily evaluated using the symbolic math program Maple
V9 [31].

The mean potential may be found by integrating over
the cross-sectional area

φ =
2

a2 − b2

∫ a

b

φ(r, t)rdr (79)

which gives:

φ =
Ga2

4

[

1 − r∗2 − (1 − r∗2)

ln(1/r∗)

]

−

Ga2

(
4

1 − r∗2

) ∞∑

n=1

J0(r
∗δn) − J0(δn)

δ4
n[J0(δn) + J0(r∗δn)]

∗

exp(−δ2

nβt/a2)

(80)

Fig. 13 - φ? for the Circular Annulus.

Fig. 14 - ψ? for the Circular Annulus.

The mean wall flux is obtained from the following ex-
pression:

ψ =
1

2π(a + b)

[

γ2πb
∂φ

∂r

∣
∣
∣
∣
r=b

− γ2πa
∂φ

∂r

∣
∣
∣
∣
r=a

]

(81)

where

γ2πb
∂φ

∂r

∣
∣
∣
∣
r=b

=
πγGa2

2

[(
(1 − r∗2)

ln(1/r∗)
− 2r∗2

)

+

8
∞∑

n=1

J0(δn)

δ2
n[J0(δn) + J0(r∗δn)]

exp(−δ2

nβt/a2)

] (82)

and

−γ2πa
∂φ

∂r

∣
∣
∣
∣
r=a

=
πγGa2

2

[(

2 − (1 − r∗2)

ln(1/r∗)

)

−

8

∞∑

n=1

J0(r
∗δn)

δ2
n[J0(δn) + J0(r∗δn)]

exp(−δ2

nβt/a2)

] (83)

The above expression is easily evaluated using the sym-
bolic math program Maple V9 [31].

Equations (80) and (81) have been used to generate
data for comparisons to the proposed models. Over the
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range of 0.0001 < t? < 10, 50-200 terms were used in the
series as required to achieve convergence. Values for n and
p are shown in Table 5 for various radii ratios. Graphical
results are shown in Figs. 13 and 14.

Table 5
Results for Circular Annulus

b/a PoDh
n RMS p RMS

0 8 -1.2 6.9 -2.8 2.7

0.0001 8.97 -1.2 6.6 -3.3 2.1

0.01 10.01 -1.2 6.4 -4.0 1.3

0.08 11.05 -1.3 6.3 -4.8 0.61

0.20 11.54 -1.3 6.2 -5.6 0.34

0.90 11.99 -1.3 6.0 -6.0 0.24

RESULTS AND DISCUSSION

Examination of the data, shows that the fitting pa-
rameter n for the mean potential φ is very nearly constant
−1.3 < n < −1.1, with a mean value n = −6/5 for all data
sets. However, the fitting parameter p for the mean flux ψ
varies with geometry or duct aspect ratio b/a. Values for p
fall in the range −6 < p < −2.4, with the largest absolute
value for the plane channel. The mean value for all data
sets examined is p = −4. It is proposed for simplicity, that
a single value representing the mean value of n and p, be
used for each model. In the case of the mean potential,
this incurs a very small error due to the small range of this
parameter. In the case of the mean flux, the RMS error
for the channel increases to 2.21 percent from 0.26 precent,
while for the tube the RMS error increases to 4.26 percent
from 2.72 precent. On the whole, choosing a constant value
of p provides an accuracy in the range of 2.21 - 7.57 percent
RMS for the rectangle, and 2.21-4.26 percent RMS for the
annulus.

The proposed models may also be applied to any shape
for which no known solution exists. As can be seen in Eqs.
(52-55), the only parameter which must be known apriori
is the steady state Poiseuille number. Since this param-
eter has been determined exactly or numerically for some
forty shapes [24], the models can be applied to a wide range
of geometeries. Further, by means of Eq. (51), Poiseuille
numbers for most common shapes may be calculated within
10 percent. The effect of aspect ratio on the fitting param-
eter was shown to be moderate. The use of a single value
introduces a small error for the sake of generality. There-
fore, the proposed models may be assumed to be universal
for any shape of interest.

SUMMARY AND CONCLUSIONS

Solutions to the transient Poisson equation for the cir-
cular tube, plane channel, rectangular channel, and circu-
lar annulus were examined. These solutions are used to
model either unsteady heat conduction due to a uniform
heat source or unsteady viscous momentum transport due

to a suddenly imposed pressure gradient. The solutions are
in the form of single and double infinite series some of which
require numerical solution to the eigenvalues. To facilitate
computation of mean potential and mean surface flux, sim-
ple models have been proposed which allow for rapid deter-
mination of these parameters. The models are defined by
Eqs. (52) and (53) or Eqs. (54) and (55) in conjunction
with Eq. (51). The fitting parameters for these equations
are:

n = −6/5

p = −4
(84)

These models were developed by means of scale analysis
and asymptotic analysis of the governing equation. The
proposed models were compared with data generated from
the exact solutions. Overall agreement between model and
theory is quite good with an RMS error between 2-6 pre-
cent for all data examined when a single constant value of
the correlation parameters was chosen. The models were
also shown to be applicable to any non-circular geometry
provided an exact or approximate value of the steady state
Poiseuille number is known for the non-circular geometry.
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