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ABSTRACT

A heat balance method (HBM) is presented for accurate and quick calculations of the overall thermal
resistance and heat dissipation from spines, longitudinal and radial fins of arbitrary profile with contact
conductance and end cooling. The proposed HBM is general and can be applied to all spines and fins,
including many practical examples that are not included in text books and handbooks. A general outline
of the HBM is presented and particular relationships are given for conduction and convection from discrete
control volumes for spines, longitudinal and radial fins. It is shown that the HBM can be easily applied to
radial fins of any profile (e.g., trapezoidal, rectangular, triangular, etc) that are mechanically attached to
tubes. The HBM can be applied to radial fins with base contact resistance and end cooling. The HBM can
be easily modified for variable heat transfer coefficients on the lateral surface; however, only uniform heat
transfer coefficients are considered herein. The HBM is easily implemented in computer algebra systems,
and its shown that the HBM gives very accurate results for 10 equal length control volumes. Its found by
comparison of the numerical results with available exact results that the maximum error is less than 1%.

Copyright c©2004 by M. M. Yovanovich. Published by the American Institute of Aeronautics and Astronautics, Inc. with

permission.
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NOMENCLATURE
a = fin tip half-thickness or radius [m]
A = conduction area [m2]
b = fin base half-thickness or radius [m]
Bi = fin Biot number ≡ hb/k
D = diameter of circular cylinder [m]
k = thermal conductivity [W/mK]
K = degree kelvin ≡ 273.15 +0 C
h = heat transfer coefficient [W/m2K]
hc = fin base contact conductance [W/m2K]
he = fin tip heat transfer coefficient [W/m2K]
I0(·), I1(·) = modified Bessel functions of first kind

of order 0 and 1
L = fin length [m]
L = radial fin length L = ro − ri [m]
m = longitudinal fin parameter ≡

√
h/kb [m]

= spine parameter ≡
√

2h/kb [m]
N = number of control volumes
P = fin perimeter [m]
Q = heat flow rate [W ]
Qfin = heat flow rate from fin [W ]
Qf,e = heat flow rate from

fin tip or end [W ]
Qf,j = heat flow rate from jth control volume [W ]
r = radial coordinate [m]
Rfin = fin resistance ≡ θb/Qfin [K/W ]
ri, ro = inner and outer radii of radial fin [m]
S? = dimensionless convection surface ≡ S/2wL
T = fin temperature [◦C]
Tf = fluid temperature [◦C]
w = width of longitudinal fin [m]
x, y = Cartesian coordinate

Greek Symbols
β = dimensionless parameter

≡ (b − a)/L
ε = thickness or radii ratio ≡ b/a
η = fin efficiency
µ = fin profile parameter
θ = excess temperature

≡ T (x) − Tf [K]
ξ = Cartesian coordinate and ≡ x/L

Subscripts
b = fin base
base = fin base
c = contact
e = fin end
end = fin end
fin = fin
i = inner
ideal = ideal fin heat flow rate
j = jth control volume
o = outer
rect = rectangular profile
trap = trapezoidal profile
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INTRODUCTION

Convection heat transfer from a prime (bare) surface in natural and forced fluid flows can be significantly
augmented or enhanced by the addition of fins or extended surfaces which are attached in some manner to
the prime surface. The fins may be integral with the prime surface or they may be mechanically attached.
If the fin base and the prime surface are integral, then the contact at the fin base is said to be perfect. If
the fins are mechanically attached, then there is a contact resistance at the fin base which reduces the heat
transfer from the fin.

The fin geometries are classified as (1) longitudinal or straight fins, (2) radial or annular fins, and (3)
spines. The profiles are classified as (a) rectangular, (b) triangular or conical, (c) convex parabolic, and (d)
concave parabolic. For a more detailed descriptions of fin geometries and fin profiles, one may consult Kern
and Kraus1, Kraus and Bar-Cohen2, Kraus et al.3, and Aziz4.

Figures 1, 2 and 3 show the general profiles of the spine and longitudinal fins, and the radial fin, respec-
tively. The half-thickness or radius at the fin tip is denoted as a, while the half-thickness or radius at the fin
base is denoted as b, and b ≥ a. The length of the fins is denoted as L, and for the radial fin its related to the
inner and outer radii, ri, ro such that L = ro − ri. The local conduction area A(x) and the local perimeter
P (x) are related to the local half-thickness or local radius denoted as y(x) which is a function of a, b, and
L through the fin profile parameter µ which can take on different values depending on the fin profile. The
relationships are given in the figures. There are two cartesian coordinates: one located in the fin base called
x, and the second located in the fin tip called ξ. They are related as x + ξ = L.

The fin thermal conductivity k is constant. The uniform heat transfer coefficient on the lateral surfaces
is denoted as h. The uniform base contact conductance is hc and the uniform tip heat transfer coefficient is
he. In general, the fin resistance depends on several parameters, i.e., Rfin = f(a, b, L, µ, k, h, hc, he).

Limiting Assumptions
The fin or extended surface equations and solutions are based on the so-called Murray-Gardner assump-

tions which are1−4:

1. The heat flow and temperature distribution in the fin are constant with time.

2. The fin material is homogeneous and isotropic.

3. The heat transfer coefficient is constant and uniform over the entire surface of the fin.

4. The temperature of the medium surrounding the fin is uniform.

5. The fin thickness relative to its length is sufficiently small that temperature gradients across the fin
thickness may be neglected.

6. The temperature at the base of the fin is uniform and constant.

7. There is no contact resistance where the base of the fin joins is in contact with the prime surface.

8. There are no distributed heat sources within the fin.

9. The heat transfer through the fin tip or end is negligible compared to that leaving the fin through the
lateral surface.

10. Heat transfer to or from the fin is proportional to the temperature excess between the fin and its
surrounding medium, and the temperature excess is one-dimensional.

Many analytical solutions are available1−4 for longitudinal, radial fins, and spines which are based on the
limiting assumptions of Murray-Gardner. The results are often presented as fin efficiency or fin effectiveness
in graphical form or as analytical relationships1−4.

Assumptions 6, 7 and 9 are too restrictive because they preclude many important practical applications.
To overcome these restrictions Yovanovich5 developed a non-iterative control volume approach to systems
with one-dimensional conduction with convection heat losses. This novel approach permitted the relaxation
of assumptions 6, 7 and 9, and it was applied to longitudinal fins, radial fins, and spines of any profile with
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uniform and variable heat transfer coefficient along the lateral surface. It was demonstrated that only a few
(5 to 10) control volumes yielded very accurate numerical results for the fin resistance and fin efficiency.

Yovanovich6 formulated the fin equation in orthogonal curvilinear coordinates. He demonstrated that
the general fin equation with general boundary conditions, contact resistance at the fin base and convective
cooling at the fin tip, reduced to many special cases1−4. There are many other cases which arise from the
general fin equation, e.g., solutions which are valid for conduction through cylindrical and spherical shells,
to name only two special cases.
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Fig. 1 General Spine Profile

Mitra and Yovanovich7 recently presented a resistance network method applied to radial fins of arbitrary
profile with contact resistance at the fin base and convective cooling at the fin end. It was shown that only
a few internal resistors (5 to 10) give very accurate numerical results for the fin resistance and fin efficiency
when compared against available analytical results. It was shown that the fin resistance converges rapidly
to a constant value as the number of internal resistors increases.
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Fig. 2 General Longitudinal Profile

Assumptions 6, 7 and 9 will be relaxed in the development of the heat balance method; therefore the
relationships will be general and applicable to all fins which have contact resistance at the fin base and
significant cooling at the fin tip. The proposed HBM will be applied to longitudinal fins, radial fins, and
spines having arbitrary profile with uniform heat transfer coefficient over the entire lateral surface, with
contact conductance at the fin base, and convective cooling of the fin tip. The HBM will yield accurate
numerical values for discrete excess temperatures, fin resistance, and fin heat transfer rate.
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Fig. 3 General Radial Fin Profile

HEAT BALANCE METHOD FOR SPINES, LONGITUDINAL AND RADIAL FINS

A simple and direct numerical method based on heat balances on discrete control volumes will be outlined
and implemented to demonstrate the accuracy and efficacy of this approach to one-dimensional conduction
with convection problems. The system (spines, longitudinal and radial fins) is divided into N equal length
control volumes of length L/N where N ≥ 3 as shown in Fig. 4. For radial (annular) systems, the length is
defined as L = ro − ri where ri and ro represent the inner and outer radii, respectively. The system consists
of two boundary control volumes (one at the system base and one at the system tip) and (N − 2) interior
control volumes. The origin of the cartesian coordinate x is located in the base of the system and 0 ≤ x ≤ L.
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Fig. 4 Locations of Temperature Nodes

Excess temperature nodes θj = Tj − Tf where 1 ≤ j ≤ N are located in the center of the control volumes
such that xj = (j−1/2)L/N . One node, labelled θ0, is located in the base surface and another node, labelled
θN+1, is located in the system tip.
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If there is contact resistance at the system base, then a node, labelled θb, is located in the base x = 0−.
The nodes θb = Tb − Tf and θ0 are connected by the contact resistance Rc = 1/hcAb where hc > 0 is the
base contact conductance. If there is perfect contact at the base, i.e., hc → ∞, then θ0 = θb. Approximate
values of the system heat transfer rate, Qfin, and the system resistance, Rfin, will be obtained from the
approximate values of the excess temperatures which will depend on the number of control volumes.

In order to make heat balances on the control volumes it is necessary to define the heat conduction
and convection relationships at the system base and tip, and on the control volume boundaries. The heat
conduction and convection relationships will depend on the conduction areas and the convection surface
areas which may be defined accurately for the spine, and longitudinal, and radial systems.

Conduction Relationships on Control Volume Boundaries
In the general case there are N control volumes and N + 2 relationships for the conduction rates into and
out of the control volumes. The conduction rates into and out of the control volumes, shown in Fig. 5, are

Qbase = hcA0 (θb − θ0)

Q0 =
kA(L/4N )

L/2N
(θ0 − θ1)

Qj =
kAj

L/N
(θj − θj+1)

QN =
kA(L − L/4N )

L/2N
(θN − θN+1)

Qend = heANθN+1





(1)

where 1 ≤ j ≤ N − 1. The distance between the excess temperature nodes θ0 and θ1 at the system base,
and θN and θN+1 at the system tip, is L/2N .

Convection Relationships at the Control Volume Boundaries
In the general case there are N + 1 relationships for the convection losses from the lateral boundaries and
the system tip. The convection loses from the conrol volumes are shown in Fig. 5, and they are given by
the following relationships:

Qf,j = hjSjθj

Qf,e = heANθN+1

}
(2)

where 1 ≤ j ≤ N and hj represents the average value of the heat transfer coefficient on the jth control
volume surface. If the heat transfer coefficient is uniform, then hj = h for 1 ≤ j ≤ N . The heat transfer
coefficient at the system tip (end) which is denoted as he is assumed to be uniform over the system tip.

Heat Balance Relationships
There are N + 2 heat balance relationships:

HBbase = Qbase − Q0 = 0

HB1 = Q0 − Q1 − Qf,1 = 0

HBj = Qj−1 − Qj − Qf,j = 0 2 ≤ j ≤ N − 1

HBN = QN−1 − QN − Qf,N = 0

HBend = QN − Qf,e = 0





(3)
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Fig. 5 Heat Balances on Control Volumes

The heat balance relationships give N +2 equations for the excess temperature nodes θj where 0 ≤ j ≤ N +1.
System Heat Transfer Rate
The heat transfer rate through the system is given by the convection losses and the base conduction rela-
tionships:

convection losses Qfin =
N∑

j=1

Qf,j + heAN θN+1

base conduction Qfin =
kA(L/4N )

L/2N
(θ0 − θ1)





(4)

The calculated values of Qfin based on conduction from the system base into the first control volume
and the convection losses are equal.
System Resistance
The system (fin) resistance is

Rfin =
θb

Qfin
(5)

which includes the effect of the base contact resistance.
Fin Efficiency
The fin efficiency is defined for perfect base contact; its given by

η =
Qfin

Qideal
(6)

where the ideal (maximum) heat transfer rate from the system surface is

Qideal = [hS + he AN ] θ0 (7)

where h is the uniform heat transfer coefficient on the total lateral convection surface area S. This relationship
excludes the effect of base contact resistance. If we let hc → ∞, then θ0 → θb.

CONDUCTION AND CONVECTION SURFACE AREAS

The conduction areas and convection surfaces areas must be defined for the spine, longitudinal and radial
systems.
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Spines of Arbitrary Profile
For spines of arbitrary profile the conduction area and the convection surface areas are related to the local
radius:

r = a + (b − a)
(
1 − x

L

)µ

0 ≤ x ≤ L (8)

where a and b are the radii of the axisymmetric system at the system tip and base respectively. The profile
parameter is µ ≥ 0. If the system profile is rectangular, then µ = 0 and a = b, and the system is called
a circular fin or a pin fin. If the system profile is conical, then µ = 1, and if a < b, the profile is called
trapezoidal. If µ = 1/2 and a = 0, the profile is called a convex parabolic profile, and if µ = 2 and a = 0,
the profile is called a concave parabolic profile.

The local conduction area for the spines is

A = πr2 = π
[
a + (b − a)

(
1 − x

L

)µ]2

0 ≤ x ≤ L (9)

The base and tip conduction areas are Ab = A(0) = πb2 and Ae = A(L) = πa2 for all values of µ. The
relationship for the conduction area at discrete locations xj = jL/N is

Aj = A(xj) = π

[
a + (b − a)

(
1 − j

N

)µ]2

0 ≤ j ≤ N (10)

The differential of the convection surface area is given by

dS = 2πrds = 2πr

√
1 +

(
dr

dx

)2

dx (11)

Numerical integration is required for large values of dr/dx. If the system is slender, i.e., dr/dx ≤ 0.1, then
the relationship can be integrated for arbitrary values of µ. The general relationship for the total convection
area is

S = 2πbL

(
1 + µε

1 + µ

)
where 0 ≤ ε = a/b ≤ 1 (12)

The convection surface area for the jth control volume may be obtained from the following integral:

Sj = 2πbL

∫ j/N

(j−1)/N

[ε + (1 − ε) (1 − ξ)µ] dξ (13)

Evaluation of the integral yields the general relationship:

Sj

2πbL
=

ε

N
−

(
1 − ε

1 + µ

)[(
N − j

N

)1+µ

−
(

N − j + 1
N

)1+µ
]

(14)

with 1 ≤ j ≤ N .
Longitudinal Fins of Arbitrary Profile
For longitudinal fins of arbitrary profile the conduction and the convection surface areas are related to the
local half thickness:

y = a + (b − a)
(
1 − x

L

)µ

0 ≤ x ≤ L (15)

where a and b are the half thicknesses at the system tip and base, respectively. The profile parameter is
µ ≥ 0. For the rectangular profile a = b and µ = 0. For the trapezoidal profile a < b and µ = 1. For the
concave parabolic profile a < b and µ = 2, and for the convex parabolic profile a < b and µ = 1/2.

The local conduction area for longitudinal fins of width w is

A = 2wy = 2w
[
a + (b − a)

(
1 − x

L

)µ]
0 ≤ x ≤ L (16)

The base and tip conduction areas are Ab = A(0) = 2wb and Ae = A(L) = 2wa, respectively, for all values
of µ. The relationship for the conduction area at discrete locations xj = jL/N is
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Aj = A(xj) = 2w

[
a + (b − a)

(
1 − j

N

)µ]
0 ≤ j ≤ N (17)

The differential of the convection surface area is given by

dS = 2wds = 2w

√
1 +

(
dy

dx

)2

dx (18)

The total convection surface area is given by

S = 2wL

∫ 1

0

√
1 + µ2β2(1 − ξ)2µ−2 dξ (19)

where β = (b − a)/L and ξ = x/L. The dimensionless convection surface area depends on µ and β:

S? =
S

2wL
= f(µ, β) (20)

For the rectangular profile, µ = 0, S? = 1 and for the trapezoidal profile, µ = 1, S? =
√

1 + β2. The
dimensionless convection surface area for the concave parabolic profile, µ = 1/2, is

S? =
1
2

√
4 + β2 +

β2

4
sinh−1

(
2
β

)
(21)

and for the convex parabolic profile, µ = 2, it is

S? =
1
2

√
1 + 4β2 +

1
4β

sinh−1(2β) (22)

If the longitudinal fins are slender, i.e., the slenderness parameter is

µβ ≤ 0.1 (23)

then the total convection surface area is approximately

S = 2wL (24)

The convection surface area for the control volumes is given by the following integral:

Sj = 2wL

∫ j/N

(j−1)/N

[
1 + µ2

(
b − a

L

)2

ξ2µ−2

]1/2

dξ 1 ≤ j ≤ N (25)

For the general case, numerical integration is required to calculate values of Sj . For the trapezoidal profile,
µ = 1 and a < b, the integral gives

Sj =
2wL

N

√
1 +

(
b − a

L

)2

1 ≤ j ≤ N (26)

For slender longitudinal fins, (b − a)/L ≤ 0.1, the convection surface area of all control volumes is

Sj =
2wL

N
(27)

Radial Fins of Arbitrary Profile
The radial fin of arbitrary profile has inner and outer radii ri and ro, respectively. The fin half thickness at
the fin tip is a and the half thickness at the fin base is b. The local half thickness is given by the following
general relationship:

y = a + (b − a)
(

ξ

L

)µ

0 ≤ ξ ≤ L (28)

9

American Institute of Aeronautics and Astronautics



where the fin length is defined as L = ro − ri and the fin profile parameter is µ. The origin of the local
cartesian coordinate x is located in the fin base and its related to the circular coordinate as r + x = ro. If
the fin profile is rectangular, then µ = 0 and a = b. If the fin profile is trapezoidal, µ = 1 and a < b. The
triangular profile has µ = 1 and a = 0. Many different fin profiles may be modeled by appropriate selection
of the values of a, b and µ.

The local half thickness may be expressed in circular coordinates as

y = a + (b − a)
(

ro − r

ro − ri

)µ

ri ≤ r ≤ ro (29)

The local conduction area is given by

A = 4πr

[
a + (b − a)

(
ro − r

ro − ri

)µ]
ri ≤ r ≤ ro (30)

The conduction areas at the fin base and tip are Ab = A(ri) = 4πrib and Ae = A(ro) = 4πroa, respectively.
The conduction areas which are located at r = ri + jL/N are given by

Aj = 4π

(
ri + j

L

N

)[
a + (b − a)

(
ro − ri − jL/N

ro − ri

)µ]
(31)

where 0 ≤ j ≤ N . The base and tip conduction areas are A0 = 4πrib and AN = 4πroa, respectively.
The differential of the convection surface area is

dS = 4π(ro − x)

[
1 +

(
dy

dx

)2
]1/2

dx (32)

Thus, the general relationship for the total surface area may be expressed as

S = 4πL

∫ 1

0

(ro − Lξ)
[
1 + µ2β2 (1 − ξ)2µ−2

]1/2

dξ (33)

with ξ = x/L and β = (b − a)/L. The integral yields closed form relationships for the rectangular profile,
µ = 0 and a = b, the trapezoidal profile, µ = 1 and a < b, which reduces to the triangular profile, µ = 1, and
a = 0. For the concave profile, µ = 1/2, and the convex profile, µ = 2, the relationships are very complex,
and therefore, numerical integration is recommended. The relationship for the rectangular profile is

Srect = 2π
(
r2
o − r2

i

)
(34)

The relationship for the trapezoidal profile is

Strap = 2π
(
r2
o − r2

i

)
[
1 +

(
b − a

ro − ri

)2
]1/2

(35)

which shows its relationship to the rectangular profile.
For slender radial fins where |dy/dx| < 0.1, the total convection surface area for the trapezoidal, concave

parabolic and convex parabolic profiles may be approximated by the total surface area for the rectangular
profile. In general, the slenderness parameter is

µβ ≤ 0.1 (36)

The general relationship for the surface area of the jth control volume is

Sj = 4πL

∫ j/N

(j−1)/N

(ro − Lξ)
[
1 + µ2β2 (1 − ξ)2µ−2

]1/2

dξ (37)

For the rectangular profile we have
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Srect,j, = 4π (ro − ri)

{
r0

N
− (r0 − ri)

2

[(
j

N

)2

−
(

j − 1
N

)2
]}

(38)

For the trapezoidal profile we have

Strap,j = 4π (ro − ri)
√

1 + β2

{
r0

N
− (r0 − ri)

2

[(
j

N

)2

−
(

j − 1
N

)2
]}

(39)

with β = (b − a)/L.

IMPLEMENTATION OF HEAT BALANCE METHOD

The heat balance method will be used to calculate the heat dissipation and the fin efficiency of spines,
longitudinal and radial fins1,3. In all cases the base contact is perfect and the fin tip is adiabatic. Calculations
will be done with N = 3, 5, 10, 20 control volumes to show the rapid convergence to the exact values.
Spines
Spines of rectangular, µ = 0, conical, µ = 1, concave parabolic, µ = 2, and convex parabolic, µ = 1/2,
profiles are examined. The geometric and thermophysical parameters for the spines are given in Table 1.

The fin Biot number is
Bi =

hb

k
= 0.001840

which is much smaller than the critical value of 0.1. The fin parameter values for the analytical solutions are

m =

√
2h

kb
= 13.1876 m−1 and mL = 1.31876

Table 1 Values of Parameters for Spines3

b = 4.60 mm h = 40 W/m2 · K

L = 100 mm Tb = 100◦C

k = 100 W/m · K Tf = 25◦C

Kraus et al3. reported theoretical values for the four spines which are listed in Table 2.

Table 2 Fin Efficiencies and Heat Transfer Rates3

Profile of Spine η Qfin(W )
Rectangular (µ = 0) 0.657 5.70
Conical (µ = 1) 0.796 3.45
Concave parabolic (µ = 2) 0.858 2.48
Convex parabolic (µ = 1/2) 0.744 4.30

To approximate the adiabatic tip and the perfect base contact, the following values were used: he =
10−20 W/m2 · K and hc = 1020 W/m2 · K. Computer algebra systems were used to implement the heat
balance method for the four types of spines. The calculated values are listed in Table 3. The numerical
values of η and Qfin converge rapidly to the exact values for N ≥ 5.

Table 3 Convergence of HBM

µ = 0 Qideal = 8.671 W

N η Qfin

3 0.6398 5.547
5 0.6507 5.642
10 0.6554 5.683
20 0.6566 5.694

exact 0.657 5.70
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µ = 1 Qideal = 4.335 W

N η Qfin

3 0.7677 3.328
5 0.7862 3.408
10 0.7939 3.442
20 0.7958 3.450

exact 0.796 3.45
µ = 1/2 Qideal = 5.781 W

N η Qfin

3 0.7200 4.162
5 0.7351 4.249
10 0.7415 4.286
20 0.7431 4.296

exact 0.744 4.30

µ = 2 Qideal = 2.890 W

N η Qfin

3 0.8212 2.373
5 0.8452 2.443
10 0.8548 2.471
20 0.8571 2.477

exact 0.858 2.48

If N = 10, the differences between the exact and approximate values for η for all spines fall in the range
−0.25% to −0.37%. The heat balance method is easy to implement, and it is rapid and accurate.
As another example of the implementation of the HBM we will obtain the set of general heat balance
equations for a circular spine where µ = 0 and a = b if there is base contact resistance characterized by
hc 6= ∞, with tip cooling he 6= 0, and variable convection coefficient h(x). The average value of h(x) for the
jth control volume is denoted as hj . We choose the number of control volumes to be N = 5. For N = 5,
the heat balances on the finite length control volumes yield the following general equation set for the excess
temperature nodes.





hcA0 (θb − θ0) −
10kA0

L
(θ0 − θ1) = 0 (1)

10kA0

L
(θ0 − θ1) −

5kA1

L
(θ1 − θ2) − h1S1θ1 = 0 (2)

5kA1

L
(θ1 − θ2) −

5kA2

L
(θ2 − θ3) − h2S2θ2 = 0 (3)

5kA2

L
(θ2 − θ3) −

5kA3

L
(θ3 − θ4) − h3S3θ3 = 0 (4)

5kA3

L
(θ3 − θ4) −

5kA4

L
(θ4 − θ5) − h4S4θ4 = 0 (5)

5kA4

L
(θ4 − θ5) −

10kA5

L
(θ5 − θ6) − h5S5θ5 = 0 (6)

10kA5

L
(θ5 − θ6) − heA5θ6 = 0 (7)





(40)

For the fin parameter values given in Table 4 obtain the heat balance equations, and calculate the excess
temperatures θj , calculate the fin heat transfer rate, and calculate the fin resistance.
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Table 4 Values of Parameters of Circular Fin

a = 3 mm hc = 50000 W/m2 ·K

L = 40 mm he = 75 W/m2 · K

k = 180 W/m ·K θb = 100 K

h = 55 W/m2 ·K

For a circular fin of constant cross section, Aj = πa2 for 0 ≤ j ≤ N , and Sj = 2πaL/N for 1 ≤ j ≤ N .
For the circular fin parameters listed in Table 4, the equation set for the excess temperature nodes θ0 . . . θ6

for constant conduction area A and perimeter P , with uniform heat transfer coefficients h, he, and contact
conductance hc are





9
20

π (100− θ0) −
81
200

π (θ0 − θ1) = 0

81
200

π (θ0 − θ1) −
81
400

π (θ1 − θ2) −
33

12500
π θ1 = 0

81
400

π (θ1 − θ2) −
81
400

π (θ2 − θ3) −
33

12500
π θ2 = 0

81
400

π (θ2 − θ3) −
81
400

π (θ3 − θ4) −
33

12500
π θ3 = 0

81
400

π (θ3 − θ4) −
81
400

π (θ4 − θ5) −
33

12500
π θ4 = 0

81
400

π (θ4 − θ5) −
81
200

π (θ5 − θ6) −
33

12500
π θ5 = 0

81
200

π (θ5 − θ6) −
27

40000
π θ6 = 0





(41)

The factors that appear in the equation set are exact values. The calculated excess temperatures are listed
in Table 5.

Table 5 Numerical (Theoretical) Values of Excess Temperatures K

θb = 100.000 (100.000) θ3 = 86.182 (86.396)
θ0 = 97.314 (97.371) θ4 = 83.740 (84.082)
θ1 = 94.487 (94.448) θ5 = 82.391 (82.864)
θ2 = 89.749 (89.837) θ6 = 82.117 (82.726)

The numerical and analytical values of the fin heat transfer rate and fin resistance are listed in Table 6
for 5 control volumes.

Table 6 Theoretical and Numerical Values of Fin Dissipation and Resistance for N = 5

Theoretical Numerical
Qfin, W 3.797 3.717
Rfin, K/W 26.338 26.901

The numerical values for the fin heat transfer rate and the fin resistance are in very good agreement with
the theoretical values.
Longitudinal Fin of Triangular Profile
In order to illustrate the efficacy of the heat balance method it will be used to find the approximate rela-
tionships for the triangular fin with the parameter values listed in Table 7. The contact at the base of the
fin is perfect.
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Table 7 Values of Triangular Fin Parameters

b = 16 mm h = 100 W/m2 · K
L = 80 mm T0 = 115◦C
w = 1 m Tf = 15◦C
k = 25 W/m ·K

The fin parameters Qideal, Qfin, Rfin, and η will be calculated for N = 3, 5, 10 and 20 to show the rapid
convergence to the theoretical values. The fin parameter values are

Bi =
hb

k
= 0.0640

m =

√
h

kb
= 15.81139 m−1

mL = 1.264911

The theoretical values are
Qideal = 1631.69 W

η =
1

mL

I1(2mL)
I0(2mL)

= 0.6073

Qfin = η Qideal = 990.951 W

Rfin =
θ0

Qfin
= 0.1009 K/W





(42)

The approximate values calculated by means of the heat balance method are listed in Table 8. The
convergence of the numerical values are rapid; the differences between the values of N = 5 and N = 20 are
less than 0.4%.

Table 8 Numerical Values for Triangular Fin

N Qfin Rfin η

3 974.01 0.1027 0.5969
5 980.77 0.1020 0.6011
10 983.66 0.1017 0.6028
20 984.39 0.1016 0.6033

If we choose N = 10, the 11 equations for the excess temperature nodes θj for 0 ≤ j ≤ 10 are given in
the following equation set:





θ0 = 100

200 θ0 − 291.631686 θ1 + 90 θ2 = 0

90 θ1 − 171.631686 θ2 + 80 θ3 = 0

80 θ2 − 151.631686 θ3 + 70 θ4 = 0

70 θ3 − 131.631686 θ4 + 60 θ5 = 0

60 θ4 − 111.631686 θ5 + 50 θ6 = 0

50 θ5 − 91.631686 θ6 + 40 θ7 = 0

40 θ6 − 71.631686 θ7 + 30 θ8 = 0

30 θ7 − 51.631686 θ8 + 20 θ9 = 0

20 θ8 − 31.631686 θ9 + 10 θ10 = 0

10 θ9 − 11.631686 θ10 = 0





(43)
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Table 9 Numerical and Theoretical Values of Excess Temperatures

Node Numerical Theoretical
θ0 115.00 115.00
θ1 110.08 110.22
θ2 100.88 101.11
θ3 92.27 92.60
θ4 84.24 84.64
θ5 76.75 77.20
θ6 69.78 70.27
θ7 63.30 63.83
θ8 57.28 57.84
θ9 51.71 52.28
θ10 46.56 47.13

The agreement between the numerical and exact values of θj is very good for all excess temperature
nodes as seen in Table 9.
Radial Fin of Rectangular Profile
The HBM will be used to calculate excess temperatures, fin heat transfer rate, fin resistance, and fin efficiency
of a radial fin of rectangular profile where µ = 0. There is perfect thermal contact at the fin base and the
fin tip is adiabatic.

The fin parameter values are listed in Table 10.

Table 10 Values of Parameters of Radial Fin

ri = 10 mm h = 120 W/m2 ·K
ro = 40 mm hc = 1012 W/m2 · K
2b = 2 mm he = 0 W/m2 · K
k = 380 W/m ·K θb = Tb − Tf = 80 K

Heat balances on the N = 5 control volumes yield the following equation set for the excess temperatures
θj . 




4 × 1015 π (80 − θ0) −
437π

15
(θ0 − θ1) = 0

437 π

75
(θ0 − θ1) −

304 π

75
(θ1 − θ2) −

117 π

3125
θ1 = 0

304 π

75
(θ1 − θ2) −

418 π

75
(θ2 − θ3) −

171 π

3125
θ2 = 0

418 π

75
(θ2 − θ3) −

532 π

75
(θ3 − θ4) −

9 π

125
θ3 = 0

532 π

75
(θ3 − θ4) −

646 π

75
(θ4 − θ5) −

279 π

3125
θ4 = 0

646 π

75
(θ4 − θ5) −

1463 π

75
(θ5 − θ6) −

333 π

3125
θ5 = 0

1463 π

75
(θ5 − θ6) −

π

6.25× 1023
θ6 = 0





(44)

The set of 7 equations for θj with 0 ≤ j ≤ N + 1 = 6 are applicable to radial fins with perfect contact at the
fin base and with an adiabatic fin tip. The contact conductance value hc = 1012 W/m2 · K was assumed to
approximate perfect contact at the fin base.

Computer algebra systems were used to solve the set of equations for the values of θj . The numerical
and analytical values of excess temperatures are listed in Table 11.

The numerical values for the excess temperature at the control volume nodes lie below the analytical
values. The percent differences are below 0.7%, and the differences decrease with increasing j. The differences
between the numerical and analytical values for Tj = θj + Tf are even smaller. The agreement is excellent.
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Table 11 Numerical and Analytical Values of Excess Temperatures

θj Numerical Analytical
θ1 75.83 75.91
θ2 70.53 70.53
θ3 67.37 67.35
θ4 65.57 65.53
θ5 64.77 64.72
θ6 64.77 64.63

The numerical values for the excess temperatures at the control volume nodes lie below the analytical
values. The percent differences are below 0.7%, and the differences decrease with increasing j. The differences
between the numerical and analytical values for Tj = θj + Tf are even smaller. The agreement is excellent.

The ideal heat transfer rate for this radial fin is

Qideal = h2π
(
r2
o − r2

i

)
θ0 (45)

The fin resistance is
Rfin =

θ0

Qfin
(46)

and the fin efficiency is given by

η =
Qfin

Qideal
(47)

The fin heat transfer rate is given by

Qfin =
N∑

j=1

hSjθj =
kA(ri + L/4N )

L/2N
(θ0 − θ1) (48)

where L = ro − ri, and Sj is given by Eq. (38).
The results of the numerical calculations are listed in Table 12.

Table 12 Comparisons of Numerical and Analytical Values

Fin Parameters Numerical Analytical
Qfin (W) 76.360 76.338
Rfin (K/W) 1.0477 1.0480
η 0.8440 0.8437

Five control volumes give very accurate numerical values.

SUMMARY AND DISCUSSION

A relatively simple and direct method based on heat balances on discrete control volumes has been
presented for calculating excess temperatures, heat flow rates, and total resistances of spines, and longitudinal
and radial fins of arbitrary profile with contact conductance and end cooling. The approach, called the heat
balance method (HBM), was outlined and general relationships were presented for the conduction areas and
the convection surface areas for discrete control volumes for the spines, and longitudinal and radial fins of
arbitrary profile. The implementation of the HBM was demonstrated by means of several examples which
included spines, and longitudinal and radial fins. It was shown that the HBM yields a set of equations of
the excess temperature nodes which are assigned to the center of each control volume and the base and tip
of the fin. The set of equations is solved quickly and accurately by means of computer algebra systems such
as Maple, Matlab, Mathcad, Mathematica, and spreadsheets. It was shown that very accurate values are
obtained with 5 or more equal length control volumes. The HBM may be applied to fins with variable heat
transfer coefficient along the lateral surfaces, and to fin profiles for which there are no known analytical
solutions.
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