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PART I - HYDRODYNAMIC PROBLEM

Y.S. Muzychka� and M.M. YovanovichÆ

�Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's,
NF, Canada, A1B 3X5, ÆDepartment of Mechanical Engineering, University of Waterloo,

Waterloo, ON, Canada, N2L 3G1

ABSTRACT

A detailed review and analysis of the hydrodynamic characteristics of laminar developing and fully developed 
ow in non-
circular ducts is presented. New models are proposed which simplify the prediction of the friction factor Reynolds product
fRe for developing and fully developed 
ow in most non-circular duct geometries found in heat exchanger applications. By
means of scaling analysis it is shown that complete problem may be easily analyzed by combining the asymptotic results for
the short and long duct. Through the introduction of a new characteristic length scale, the square root of cross-sectional
area, the e�ect of duct shape has been minimized. The new model has an accuracy of � 10 percent or better for most
common duct shapes. Both singly and doubly connected ducts are considered.

NOMENCLATURE

A = 
ow area, m2

a; b = major and minor axes of ellipse or rectangle, m
C1; C2 = constants
c = linear dimension, m
D = diameter of circular duct, m
Dh = hydraulic diameter, � 4A=P
E(�) = complete elliptic integral of the second kind
e = eccentricity, m
e� = dimensionless eccentricity, � e=(ro � ri)
f = friction factor � �=( 1

2
�U2)

K = incremental pressure drop factor
L = duct length, m
L+ = dimensionless duct length, � L=LReL
N = number of sides of a polygon
n = correlation parameter
P = perimeter, m
p = pressure, N=m2

r = radius, m
r� = dimensionless radius ratio, � ri=ro
ReL = Reynolds number, � UL=�
~V = velocity vector, m=s
u; v; w = velocity components, m=s
U = average velocity, m=s
x; y; z = cartesian coordinates, m

Greek Symbols

Æ = boundary layer thickness, m
� = aspect ratio, � b=a
� = half angle, rad
� = dynamic viscosity, Ns=m2

� = 
uid density, kg=m3

� = wall shear stress, N=m2

Subscriptsp
A = based upon the square root of 
ow area

c = core
Dh = based upon the hydraulic diameter
h = hydrodynamic
i = inner
L = based upon the arbitrary length L
o = outer
1 = fully developed limit

Superscripts

C = circle
E = ellipse
P = polygon
R = rectangle

INTRODUCTION
Laminar 
ow 
uid friction and heat transfer in non-

circular ducts occurs quite frequently in low Reynolds num-
ber 
ow heat exchangers such as compact heat exchangers.
It is now also occurring more frequently in electronic cooling
applications as a result of the miniaturization of packaging
technologies. While traditional approaches rely heavily on
the use of tabulated and/or graphical data, the ability to
design thermal systems using robust models is much more
desirable. Most modern 
uid dynamics and heat transfer
texts rarely present correlations or models for more com-
plex geometries which appear in many engineering systems.
Rather, a subset of data for miscellaneous geometries is usu-
ally presented after detailed discussion and analysis of sim-
ple geometries such as the circular duct and parallel plate
channel.

In the �rst part of this paper, the hydrodynamic prob-
lem is considered in detail, and a new model is developed
for predicting the friction factor Reynolds number product
for developing laminar 
ow in non-circular ducts. In the
second part of this paper, the associated thermal problem
is considered, and new models are developed for the both

1



the classic Graetz thermal entrance problem and the com-
bined entrance problem.

Laminar fully developed 
uid 
ow in non-circular ducts
of constant cross-sectional area results when the duct length
is suÆciently greater than the entrance length, L >> Lh,
or when the characteristic transversal scale is suÆciently
small to ensure a small Reynolds number. Under these
conditions the 
ow through most of the duct may be con-
sidered fully developed. In many engineering systems such
as compact heat exchangers and micro-coolers used in elec-
tronics packaging, the characteristic dimension of the 
ow
channel is small enough to give rise to fully developed 
ow
conditions. However, in many modern systems, the 
ow
length is generally not very large, L � Lh or L << Lh, and
developing 
ow prevails over most of the duct length. In
these situations, a model capable of predicting the hydro-
dynamic characteristic, usually denoted as fRe, the friction
factor Reynolds number product, is required.

A review of the literature reveals that only two sig-
ni�cant attempts at developing a general model have been
undertaken. These are the work of Shah [1] and Yilmaz [2].
These models are based upon the early work of Bender [3].
Bender [3] combined the asymptotic result of Shapiro et al.
[4], with the result for the \long" duct, to provide a model
which is valid over the entire length of a circular duct. Shah
[1] later extended the model of Bender [3] to predict results
for the equilateral triangle, the circular annulus, the rect-
angular duct, and parallel plate channel geometries. Shah
[1] achieved this by generalizing the form of the model of
Bender [3], and tabulating coeÆcients for each particular
case. Recently, Yilmaz [2] proposed a more general model
of Shah [1]. Rather than tabulating coeÆcients, Yilmaz [2]
developed a complex correlation scheme for the fully de-
veloped friction factor fRe, the incremental pressure drop
K1, and a �tting coeÆcient C which appears in the Shah
[1] model. This model is more general than that of Shah
[1] but is also quite complex.

Despite its complexity, the model of Yilmaz [2] is ac-
curate over the entire range of the entrance and fully de-
veloped regions for many duct cross-sections. The primary
drawback of the simple model proposed by Shah [1] is the
requirement of tabulated coeÆcients and parameters for
each geometry, i.e. fRe, K1, and C, thus limiting in-
terpolation for geometries such as the rectangular duct and
circular annulus, whose solution varies with aspect ratio.
In the case of the model developed by Yilmaz [2], interpo-
lation is no longer a problem, however, this is achieved at
the cost of simplicity.

The two models discussed above represent the current
state of the art for internal 
ow problems. Both models are
based upon the combination of the \short" duct and \long"
duct solutions using the correlating method of Bender [3].
In this approach the incremental pressure drop factor K1
is required in the \long duct" solution. As a result of the
complex correlating equations forK1 developed by Yilmaz
[2], the simple physical behaviour of the hydrodynamic en-
trance problem is lost. It is apparent from the available
data, that smooth transition occurs from the entrance re-

gion to that of fully developed 
ow. Since the solution
obtained by Shapiro et al. [4] accounts for the increase in
momentum of the accelerating core, use of the term K1 in
a hydrodynamic entrance model such as that proposed by
Bender [3] is redundant. The model presented in this paper
does not require this parameter and is signi�cantly simpler
in structure.

GOVERNING EQUATIONS
The governing equations for steady incompressible 
ow

in the hydrodynamic entrance region in a non-circular duct
or channel are:

r � ~V = 0 (1)

�~V � r~V = �rp+ �r2~V (2)

Simultaneous solution to the contiuity, Eq. (1), and
momentum, Eq. (2), equations subject to the no slip con-

diction at the duct wall, ~V = 0, the boundedness condition
along the duct duct axis, ~V 6= 1, and a constant initial
velocity, ~V = U~k, are required to characterize the 
ow. In
the next section, scaling analysis is used to show the appro-
priate form of the solution for both short and long ducts.
Later, asymptotic analysis is used to develop a new model.

SCALE ANALYSIS
We now examine the momentum equation and consider

the various force balances implied under particular 
ow
conditions. The momentum equation represents a balance
of three forces: inertia, pressure, and friction, i.e.

�~V � r~V| {z }
Inertia

= �rp| {z }
Pressure

+ �r2~V| {z }
Friction

(3)

We now consider three separate force balances. Each
is examined below using the method of scale analysis advo-
cated by Bejan [5].

Long Duct Asymptote, L >> Lh
Fully developed laminar 
ow in a duct of arbitrary, but

constant cross-section, is governed by the Poisson equation:

rp|{z}
Pressure

= �r2~V| {z }
Friction

(4)

which represents a balance between the viscous and pres-
sure forces. Thus we may write the following approximate
relation using the characteristics of the 
ow and the geom-
etry:

�p

L
� �

U

L2 (5)

where L represents a characteristic transversal length scale
of the duct cross-section. The velocity scales according to
the area mean value, U , and the axial length scales accord-
ing to L. Rearranging the above expression gives:

�p � �UL

L2 (6)

Next, we examine the shear stress at the wall. The
shear stress may be approximated by
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~� = �r~V � �
U

L (7)

Next, we may introduce the de�nition of the friction
factor de�ned as the dimensionless wall shear:

f � �

�U2
� �U=L

�U2
� 1

ReL
(8)

The above expression may be written such that the fol-
lowing relationship exists for all cross-sectional geometries:

fReL � �L
�U

� O(1) (9)

or

fReL = C1 (10)

The constant C1 has been found to vary for most geome-
tries in the range 12 < C1 < 24, when L = Dh. Finally, a
control volume force balance gives

� =
�p

L

A

P
(11)

yields the following relationship when combined with the
two scaling laws, Eqs. (6,7):

L � A

P
� Dh

4
(12)

We shall see later that this length scale which results
from the force balance, although convenient, is not the most
appropriate choice.

Short Duct Asymptote, L << Lh
In the entrance region near the duct inlet two regions

must be considered. One is the inviscid core and the other
the viscous boundary layer. The 
ow within the boundary
layer is very similar to laminar boundary layer develop-
ment over a 
at plate, except that the velocity at the edge
of the boundary layer is not constant. The two regions are
now examined beginning with the 
ow within the boundary
layer.

The force balance within the boundary layer is gov-
erned strictly by inertia and friction forces:

�~V � r~V| {z }
Inertia

= �r2~V| {z }
Friction

(13)

This balance yields:

�
U2

L
� �

U

Æ2
(14)

where Æ is the boundary layer thickness. Thus,

Æ

L
� 1p

ReL
(15)

Next, considering the relationship for the wall shear:

~� = �r~V � �
U

Æ
(16)

and the friction factor, we obtain:

f � �

�U2
� �U=Æ

�U2
� �

p
ReL

�UL
� 1p

ReL
(17)

Re-writing the above expression in terms of the length
scale L, and de�ning the product of friction factor and
Reynolds number yields the following expression for the
entrance region:

fReL � O(1)p
L+

(18)

or

fReL =
C2p
L+

(19)

where

L+ =
L

LReL (20)

is the dimensionless duct length.
Finally, in the inviscid core the momentum equation

represents a balance of inertia and pressure forces:

�~V � r~V| {z }
Inertia

= �rp| {z }
Pressure

(21)

which scales according to

�U2 � �p (22)

Since the pressure at any point along the duct in the
developing region must be constant in the core and in the
boundary layer, and using the force balance given by Eq.
(11), it is not diÆcult to see that the constant in Eq. (19)
will be much larger than the value obtained for boundary
layer 
ow over a 
at plate. The constant C2 has been found
theoretically [4] for the circular duct to be C2 = 3:44 for
a mean friction factor and C2 = 1:72 for a local friction
factor.

In summary, we have found from scaling analysis the
following relationships for the friction factor Reynolds num-
ber product:

fReL =

8>><
>>:

C1 L >> Lh

C2p
L+

L << Lh

(23)

This asymptotic behaviour will be examined further
and will form the basis for the new model developed for
the hydrodynamic entrance problem. Finally, an equation
relating the approximate magnitude of the hydrodynamic
entrance length may be obtained by considering an equality
between the two asymptotic limits given in Eq. (23) with
L+ = L+

h :

C1 =
C2q
L+

h

(24)

or

L+

h =

�
C2

C1

�2

(25)
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Later, it will be shown that this approximate scale com-
pares well with more exact solutions. This solution repre-
sents the intersection of the asymptotic limits on a plot of
the complete behaviour of fRe versus L+.

ASYMPTOTIC ANALYSIS
In this section, asymptotic analysis [6] is used to estab-

lish expressions for the characteristic long duct and short
duct behaviour established through scaling analysis. First,
the long duct limit is considered and a simple expression
developed for predicting the constant fRe = C1. Addition-
ally, the issue of an appropriate characteristic length scale
is addressed. Finally, the short duct limit is considered by
re-examining the approximate solution obtained by Siegel
[7].

Long Duct Asymptote, L >> Lh
In order to establish the long duct limit, solutions to

Eq. (4) for many ducts are examined. These solutions have
been catalogued in [8,9]. The simplest duct shapes are the
circular duct and the parallel plate channel. These impor-
tant shapes also appear as limits in the elliptical duct, the
rectangular duct, and the circular annulus.

One issue which has not been addressed in the litera-
ture is the selection of an appropriate characteristic length
scale, i.e. L. Traditionally, the hydraulic diameter has been
chosen, L = 4A=P . However, in many texts its use in lami-
nar 
ow has been questioned [10-12]. In an earlier work [13],
the authors addressed this issue using dimensional analy-
sis. It was determined that the widely used concept of the
hydraulic diameter was inappropriate for laminar 
ow and
the authors proposed using L =

p
A as a characteristic

length scale, by considering other problems in mathemati-
cal physics for which the Poisson equation applies. A more
detailed discussion and analysis on the use of L =

p
A may

be found in Muzychka [14].
We will now examine a number of important results

employing both L = 4A=P and L =
p
A. Starting with the

elliptical duct, the dimensionless average wall shear, Eq.
(9), is found to be [8]:

fReDh
=

2�(1 + �2)

E(�0)
(26)

where � = b=a, the ratio of minor and major axes, and
�0 =

p
1� �2. Equation (26) has the following limits:

fReDh
=

8<
: 16 �! 1

19:76 �! 0
(27)

If the solution is recast using L =
p
A, as a character-

istic length scale, the following relationship is obtained:

fRepA =
2�3=2(1 + �2)p

�E(�0)
(28)

Equation (28) has the following limits:

fRepA =

8><
>:

8
p
� = 14:18 �! 1

2�3=2p
�

=
11:14p

�
�! 0

(29)

Next, we examine the rectangular duct. The solution
for the dimensionless average wall shear [8], considering
only the �rst term of the series gives:

fReDh
=

24

(1 + �2)

�
1� 192�

�5
tanh

� �
2�

�� (30)

Equation (30) has the following limits:

fReDh
=

8<
: 14:13 �! 1

24 �! 0
(31)

Examination of the single term solution reveals that the
greatest error occurs when � = 1, which gives a fRe value
0.7 percent below the exact value of fRe = 14:23. Results
for a wide range of aspect ratios are tabulated in [8] using
a thirty term series which provided seven digit precision.

If the solution is recast using L =
p
A, as a character-

istic length scale, the following expression is obtained:

fRepA =
12

p
�(1 + �)

�
1� 192�

�5
tanh

� �
2�

�� (32)

Equation (32) has the following limits:

fRepA =

8><
>:

14:13 �! 1
12p
�

�! 0
(33)

Table 1 presents a comparison of the exact values [8]
with the single term approximation, Eq. (30) and Eq. (32)
for both characteristic length scales. Also presented are
values which result from using the asymptotic solution for
the parallel plate channel. Clearly, this asymyptotic result
does an adequate job of predicting the values of fRepA up
to � = 0:7. Beyond this aspect ratio, very little change is
observed in the fRe values.

Table 1
Comparison of Single Term
Approximation for fRe

fReDh fRep
A

� = b=a Exact Eq. (30) Exact Eq. (32) 12=
p
�

0.001 23.97 23.97 379.33 379.33 379.47
0.01 23.68 23.68 119.56 119.56 120.00
0.05 22.48 22.47 52.77 52.77 53.66
0.1 21.17 21.16 36.82 36.81 37.95
0.2 19.07 19.06 25.59 25.57 26.83
0.3 17.51 17.49 20.78 20.76 21.91
0.4 16.37 16.34 18.12 18.09 18.97
0.5 15.55 15.51 16.49 16.46 16.97
0.6 14.98 14.94 15.47 15.43 15.49
0.7 14.61 14.55 14.84 14.79 14.34
0.8 14.38 14.31 14.47 14.40 13.42
0.9 14.26 14.18 14.28 14.20 12.65
1 14.23 14.13 14.23 14.13 12.00
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Next, a comparison is made between the elliptical and
rectangular duct solutions. It is now apparent that the so-
lution for the circular duct and square duct have essentially
collapsed to a single value, Eqs. (29, 33). Further, in the
limit of small aspect ratio, the results for the elliptic duct
and the rectangular duct have also come closer together,
Eqs. (29, 33). It is also clear from this analysis, that the
square root of cross-sectional area is more appropriate than
the hydraulic diameter for non-dimensionalizing the lami-
nar 
ow data. As seen in Table 2, the maximum di�erence
between the values for fRe occur in the limit of � ! 0.
Comparison of Eq. (29) and Eq. (33) shows this di�er-
ence is only 7.7 percent. Thus, we may use the simpler
expression, Eq. (32), to compute values for the elliptical
duct. This way, the elliptic integral in Eq. (28) need not
be evaluated.

Table 2
fRe Results for Elliptical and Rectangular

Geometries [8]

fReDh fRep
A

� = b=a Rect. Ellip.
fReR

fReE
Rect. Ellip.

fReR

fReE

0.01 23.67 19.73 1.200 119.56 111.35 1.074
0.05 22.48 19.60 1.147 52.77 49.69 1.062
0.10 21.17 19.31 1.096 36.82 35.01 1.052
0.20 19.07 18.60 1.025 25.59 24.65 1.038
0.30 17.51 17.90 0.978 20.78 20.21 1.028
0.40 16.37 17.29 0.947 18.12 17.75 1.021
0.50 15.55 16.82 0.924 16.49 16.26 1.014
0.60 14.98 16.48 0.909 15.47 15.32 1.010
0.70 14.61 16.24 0.900 14.84 14.74 1.007
0.80 14.38 16.10 0.893 14.47 14.40 1.005
0.90 14.26 16.02 0.890 14.28 14.23 1.004
1.00 14.23 16.00 0.889 14.23 14.18 1.004

Table 3
fRe Results for Polygonal Geometries [8]

N fReDh
fReP

fReC
fRep

A

fReP

fReC

3 13.33 0.833 15.19 1.071
4 14.23 0.889 14.23 1.004
5 14.73 0.921 14.04 0.990
6 15.05 0.941 14.01 0.988
7 15.31 0.957 14.05 0.991
8 15.41 0.963 14.03 0.989
9 15.52 0.970 14.04 0.990
10 15.60 0.975 14.06 0.992
20 15.88 0.993 14.13 0.996
1 16 1.000 14.18 1.000

Next, we consider the regular polygons. Values for
fReDh

fall in the range 13:33 � fReDh
� 16 for 3 � N �

1. The relative di�erence between the triangular and the
circular ducts is approximately 16.7 percent. When the
characteristic length scale is changed to L =

p
A, the rela-

tive di�erence is reduced to 7.1 percent for the equilateral

triangle, and less than 0.1 percent for the remaining poly-
gons. The results are summarized in Table 3. Solutions for
a number of other common geometries are shown in Figs. 1
and 2 as a function of aspect ratio. The de�nition of aspect
ratio is summarized in Table 4 for a number of geometries.
With the exception of the trapezoid and the annular sector,
the aspect ratio for all singly connected ducts is taken as
the ratio of the maximum width to maximum length such
that 0 < � < 1. For the trapezoid, annular sector, and
the doubly connected duct, simple expressions have been
devised to relate the characteristic dimensions of the duct
to a width to length ratio.

Fig. 1 - fRepA for Regular Flat Ducts,
Data from Ref. [8]

Fig. 2 - fRepA for Other Non-Circular Ducts,
Data from Ref. [8]

The �nal results to be considered are those of the cir-
cular annulus and other annular ducts which are bounded
externally by a polygon or internally by a polygon [8]. It
is clear from Fig. 3 that excellent agreement is obtained
when the results are rescaled according to L =

p
A and a

new aspect ratio de�ned as r� =
p
Ai=Ao. This de�nition

was chosen since it returns the same r� ratio for the circular
annular duct. Values for fRe for the circular annulus and
other shapes have been examined by Muzychka [14].
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Fig. 3 - fRepA for Doubly Connected Ducts,
Data from Ref. [8]

Table 4
De�nitions of Aspect Ratio

Geometry Aspect Ratio

Regular Polygons � = 1

Singly-Connected � =
b

a

Trapezoid � =
2b

a+ c

Annular Sector � =
1� r�

(1 + r�)�

Circular Annulus � =
(1� r�)

�(1 + r�)

Eccentric Annulus � =
(1 + e�)(1� r�)

�(1 + r�)

It should be noted that as the inner boundary ap-
proaches the outer boundary, there is some departure from
the circular annulus result due to the 
ow �eld becoming
multiply connected. These points have not been shown on
the plot. Limiting values of r� are provided in [13,14]. It
has been found that Eq. (32) may be used to predict the
results of the circular annulus provided the following equiv-
alent singly connected aspect ratio is de�ned:

� =
(1� r�)
�(1 + r�)

(34)

This result may be obtained from two di�erent physi-
cal arguments. The �rst is the ratio of the of gap, ro � ri,
to the mean perimeter, while the second is obtained as the
ratio of the gap to the equivalent length if the duct area,
�(r2o � r2i ), is converted to a rectangle. Both points of view
yield the same de�nition.

It is now clear that Eq. (32) fully characterizes the

ow in the long duct limit. The maximum deviation of ex-
act values is of the order 7-10 percent. It has now been
shown that the dimensionless average wall shear, fRe, may

be predicted from Eq. (32), provided an appropriate de�n-
tion of the aspect ratio is chosen.

Short Duct Asymptote, L << Lh
An analytical result for the friction factor in the en-

trance region of the circular duct was obtained by Siegel
[7] using several methods. The solution begins with the
de�nition of the short duct friction factor which may be
obtained by writing Bernoulli's equation in the entrance re-
gion. Since the pressure gradient is only a function of axial
position, the following relationship may be written which
relates the friction factor to the velocity in the inviscid core

pi � pL
1

2
�U2

=
�uc
U

�2
� 1 = 4f

�
L

D

�
(35)

In order to determine the friction factor, a relationship
for the dimensionless core velocity needs to be found. Siegel
[7] applied several approximate analytical methods to ob-
tain a solution for the velocity in the inviscid core. The
most accurate method was the application of the Method
of Thwaites, (see Goldstein [15]). The Siegel [7] analysis
begins with the integrated form of the continuity equation
in the entance region where the boundary layer is small
relative to the duct diameter:

�

4
D2U =

�

4
(D � 2Æ)2uc + �

Z Æ

0

(D � 2y)u dy (36)

where u is the velocity distribution in the boundary layer,
uc is the velocity in the core, and U is the mean velocity.
Rearranging this expression leads to

U

uc
= 1� 4

D

Z Æ

0

�
1� u

uc

�
dy+

8

D2

Z Æ

0

�
1� u

uc

�
y dy (37)

Next, using Pohlhausen's approximate velocity dis-
tribution, Siegel [7] developed an expression relating the
boundary layer displacement thickness to the velocity in
the core. Siegel [7] then obtained the following four term
approximation for the velocity in the core near the entrance
of a circular duct

uc
U

= 1 + 6:88(L+)1=2 � 43:5(L+) + 1060(L+)3=2 � � � (38)

Substitution of the above result into the expression for
the friction factor yields:

fReD =
3:44

(L+)1=2

h
1� 2:88(L+)1=2 + 111(L+) � � �

i
(39)

Atkinson and Goldstein [15] obtained a solution for the
core velocity using a method proposed by Shiller [16] which
solves for the velocity in the core using a series expansion.
The results of Atkinson and Goldstein [15] yield similar re-
sults, with the leading term in the series being exactly the
same. A similar analysis for the parallel channel [16] yields
the same leading term as that for the circular duct. Analy-
sis of the expressions developed by Siegel [7], and Atkinson
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and Goldstein [15], reveal that the leading term may be
non-dimensionalized using any characteristic length scale
without introduction of scaling terms:

fReL =
3:44

(L+)1=2

"
1� 2:88(L+)1=2

�L
D

�
+ 111(L+)

�L
D

�2

� � �
#

(40)
where L+ is de�ned by Eq. (20).

However, rescaling the additional terms in the expres-
sion results in scaling parameters which are now functions
of the duct geometry. Thus very near the inlet of any non-
circular duct, the leading term of the solution is valid. As
the boundary layer begins to grow further downstream, the
e�ects of geometry become more pronounced and the solu-
tion for the circular duct is no longer valid. The leading
term in the solution for any characteristic length L is

fReL =
3:44p
L+

(41)

which is valid for L+ = L=LReL � 0:001. If a local friction
factor is desired, the constant 3.44 is replaced by 1.72.

Equation (41) is independent of the duct shape and
may be used to compute the friction factor for the short
duct asymptote of most non-circular ducts.

MODEL DEVELOPMENT AND COMPARISONS
A general model is now proposed using the Churchill

and Usagi [17] asymptotic correlation method. The model
takes the form:

fRepA =

�
(C1)

n
+

�
C2p
L+

�n�1=n
(42)

where n is a superposition parameter determined by com-
parison with numerical data over the full range of L+. Us-
ing the results provided by Eq. (32) and Eq. (41), and
the general expression, Eq. (42), the following model is
proposed:

fRepA =2
664
0
BB@ 12

p
� (1 + �)

�
1� 192�

�5
tanh

� �
2�

��
1
CCA

2

+

�
3:44p
L+

�2

3
775
1=2

(43)
Using the available data [8,9], it is found that the value

of n which minimizes the root mean square di�erence lies
in the range 1:5 < n < 3:6 with a mean value n � 2,
[14,18]. Twenty-six data sets were examined from Refs.
[8,9] and are summarized in [14,18]. Comparisons of the
model are presented in Figs 4-6 for the most common duct
shapes. With the exception of the eccentric annular duct
at large values of r� and e�, i.e. a crescent shape, the pro-
posed model predicts all of the developing 
ow data avail-
able in the literature to within �10 percent or better with
few exceptions. The proposed model provides equal or bet-
ter accuracy than the model of Yilmaz [2] and is also much
simpler. A comparison of the model with the data for the

parallel plate channel is also provided. For this geome-
try

p
A ! 1, however, this geometry may be accurately

modeled as a rectangular duct with � = 0:01 or a circular
annular duct with r� > 0:5. Good agreement is obtained
with the current model when the parallel plate channel is
modeled as a �nite area duct with small aspect ratio.

One notable feature of the new model is that it does
not contain the incremental pressure drop term K1 which
appears in the models of Bender [3], Shah [1], and Yilmaz
[3]. Since the solution of Siegel [7] for the entrance region
accounts for both the wall shear and the increase in mo-
mentum due to the accelerating core, there is no need to
introduce the term K1. Thus the proposed model is now
only a function of the dimensionless duct length L+ and
aspect ratio �, whereas the models of Shah [1] and Yilmaz
[2] are functions of many more parameters.

Finally, it is desirable to develop an expression for the
hydrodynamic entrance length. Traditionally, the length
of hydrodynamic boundary layer development in straight
ducts of constant cross-sectional area is usually de�ned as
the point where the centerline velocity is 0:99Umax, Shah
and London [8]. A new de�nition for the hydrodynamic en-
trance length may be obtained from Eq. (25). Substituting
Eq. (32) for C1 and C2 = 3:44, an approximate expression
for the entrance length is obtained:

L+

h = 0:0822�(1 + �)2
�
1� 192�

�5
tanh

� �
2�

��2
(44)

The expression above reduces to L+

h = 0:059 when
� = 1 and L+

h = 0:00083 when � = 0:01. These lengths
when rescaled to be based on the hydraulic diameter take
the values L+

h = 0:047 when � = 1 and L+

h = 0:021 when
� = 0:01. They compare with the results from Shah and
London [8] for the circular duct, L+

h = 0:056, and parallel
plate channel, L+

h = 0:011.

SUMMARY AND CONCLUSIONS
A simple model was developed for predicting the fric-

tion factor Reynolds number product in non-circular ducts
for developing laminar 
ow. The present study took advan-
tage of scale analysis, asymptotic analysis, and the selection
of a more appropriate characteristic length scale to develop
a simple model. This model only requires two parameters,
the aspect ratio of the duct and the dimensionless duct
length. Whereas the model of Shah [1] requires tabulated
values of three parameters, and the model of Yilmaz [2] con-
sists of several equations. The present model predicts most
of the developing 
ow data within � 10 percent or better
for 8 singly connected ducts and 2 doubly connected ducts.
Finally this model may also be used to predict results for
ducts for which no solutions or tabulated data exist. It was
also shown that the square root of the cross-sectional 
ow
area was a more e�ective characteristic length scale than
the hydraulic diameter for collapsing the numerical results
of geometries having similar shape and aspect ratio.
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Fig. 4 - fRepA for Developing Laminar Flow in
Polygonal Ducts, Data from Ref. [8]

Fig. 5 - fRepA for Developing Laminar Flow in
Regular Flat Ducts, Data from Ref. [8]

Fig. 6 - fRepA for Developing Laminar Flow in the
Circular Annular Duct, Data from Ref. [8]
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