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Thermal Spreading Resistances in Compound Annular Sectors
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Ageneral solution,basedontheseparationofvariablesmethod,for the thermal spreadingresistance incompound
annular sectors, is presented. Results are given for three heat � ux distributions: inverse parabolic, uniform, and
parabolic pro� les. The general solution can be used to model any number of equally spaced heat sources on a
compound or isotropic annulus. Graphical results are presented for a variety of parameter combinations. Finally,
it is shown that the general solution for a thin annulus reduces to that of a � ux channel when curvature effects are
negligible.

Nomenclature
As = heat source area, m2

a; b; c = radial dimensions, m
a; c = half-lengthsof � ux channel, m
Bi = Biot number, hL=k
h = contact conductanceor � lm coef� cient, W/m2 ¢ K
i = index denoting layers 1 and 2
Jº.x/ = Bessel function of � rst kind, order º
K = heat � ux coef� cient, Eq. (14)
k; k1; k2 = thermal conductivities,W/m ¢ K
L = length of � ux channel, m
L = arbitrary length scale, m
m; n = indices for summations
N = number of heat sources
Q = heat � ow rate, W
q = heat � ux, W/m2

R = thermal resistance, K/W
Rs = spreading resistance, K/W
RT = total resistance,K/W
R1D = one-dimensional resistance, K/W
R¤ = dimensionless thermal resistance, k2 RL
r = radial coordinate,m
NTs = mean source temperature, K
T1; T2 = layer temperatures,K
T1 = sink temperature,K
t ; t1; t2 = total and layer thicknesses, m
®; ¯ = angular measure, rad
0.x/ = gamma function
±m = eigenvalues,m¼=c
² = relative contact size, a=c, ¯=®
µ = temperature excess, T T1
· = relative conductivity,k2=k1

¸n = eigenvalues,n¼=®
¹ = heat � ux shape parameter, 1

2 ; 0; 1
2

½ = radii ratio
¿ = relative thickness, t=c
Ám = two-dimensional spreading function
’n ; Án = two-dimensional spreading function
Ã = angular coordinate, rad
Ãs = dimensionless spreading resistance, Rs k2L
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Introduction

T HE general solutionfor the spreadingresistanceof a � ux speci-
� ed heat source on a compoundannular sector with convective

or conductive cooling at one boundary will be presented (Fig. 1).
In this system, heat � ows through a portion of the outer surface
through two layers, having different thermal conductivities, to the
interior surface, which is convectively cooled by a uniform � lm
conductance. It is assumed that perfect contact is achieved at the
interface of the two materials. A review of the literature1 reveals
that this particular con� guration has not been analyzed. Solutions
to this problem for both the isotropic and compound con� gurations
will be presented.A particularapplicationof this solution is in tube
heat exchangerswhere several cylindrical tubes or longitudinal� ns
are attached at equal spacing to a larger cylindrical tube (Fig. 2).
The solution for the overall thermal resistance in an isotropic or
compoundannuluswould allow the effects of protectivecoatingsor
fouling depositson the larger tube to be analyzed.The solutionalso
considers curvature effects that are not present in other solutions
available in the literature.2

The general solution will depend on several dimensionless ge-
ometric and thermal parameters. In general, the total resistance is
given by

RT D R1D C Rs (1)

where R1D is the one-dimensionalcomposite resistance of the sys-
tem and Rs is the spreadingresistancecomponent.The total thermal
resistance is de� ned as

RT D . NTs T1/=Q (2)

where NTs is average source temperature.
The resistance for the con� guration shown in Fig. 1 is a function

of

R D f .a; b; c; h; k1; k2; ¯; ®; ¹/ (3)

or, in dimensionless form,

R¤ D f .a=b; b=c; ha=k1; k2=k1; ¯=®; ¹/ (4)

Expressions will be presented for three � ux distributions for the
composite and isotropic systems. It will also be shown that the gen-
eral solution for the compound annular sector simpli� es to the eq-
uivalent solution for a two-dimensional compound strip2 when the
radius of curvature is large relative to the total thickness of the
system.
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Problem Statement
The governing equation for each layer in the system shown in

Fig. 1 is Laplace’s equation

r2Ti .r; Ã/ D @2Ti

@r 2
C 1

r

@Ti

@r
C 1

r 2

@2Ti

@Ã 2
D 0 (5)

which is subject to a convectiveor mixed boundaryconditionon the
interior surface

@T1

@r

­­­­
r D a

D
h

k1
[T1.a; Ã/ T1] 0 · Ã · ® (6)

equality of the heat � ux and temperature at the interface

k1
@T1

@r

­­­­
r D b

D k2
@T2

@r

­­­­
r D b

0 · Ã · ® (7)

T1.b; Ã/ D T2.b; Ã/ 0 · Ã · ® (8)

and a speci� ed � ux distribution on the outer surface

@T2

@r

­­­­
r D c

D
q.Ã/

k2
Ã < ¯ (9)

@T2

@r

­­­­
r D c

D 0 ¯ < Ã · ® (10)

The following symmetry conditions are also required:

Fig. 1 Compound annular sector.

Fig. 2 Compound annulus with heat sources.

@Ti

@Ã

­­­­
Ã D 0

D 0 a · r · c (11)

@Ti

@Ã

­­­­
Ã D ®

D 0 a · r · c (12)

where ® varies, dependingon the symmetry of the problem, that is,
® D ¼=2, for the case shown in Fig. 3. This allows for any number,
N ¸ 1, of equally spaced heat sources to be considered.

Finally, the heat � ux q.Ã/ will take the following form:

q.Ã/ D K [1 .Ã=¯/2]¹ 0 · Ã < ¯ (13)

where ¹ > 1 and

K D
Q

¯c

2
p

¼

0
¡
¹ C 3

2

¢

0.¹ C 1/
(14)

and 0.x/ is the gamma function. The general solution will be ob-
tained for three heat � ux distributionparameter values, ¹ D 1

2 ; 0;

and 1
2
.

Solution
The solution may be obtained by means of separation of

variables.3;4 The solution is assumed to have the form µ.r; Ã/ D
R.r/ £ 9.Ã/, where µ.r; Ã/ D T .r; Ã/ T1 is the temperatureex-
cess. Applying the method of separation of variables yields the fol-
lowing solution, which satis� es the thermal boundary conditions in
the circumferential direction:

µi .r; Ã/ D Ai C Bi .r / C
1X

n D 1

£
Ci r

¸n C Dir
¸n

¤
cos .¸nÃ/

(15)

where ¸n D n¼=®.

Fig. 3 Annulus with two heat sources.



356 MUZYCHKA, STEVANOVIĆ, AND YOVANOVICH

The solution contains two parts, a uniform � ow solution and a
spreading(or constriction) solution that vanisheswhen the heat � ux
is distributedover the entire element.Because the solutionis a linear
superpositionof the two parts, they will be dealt with separately.

Uniform Flow Resistance

The Fourier solution method indicates that a uniform � ow solu-
tion also satis� es the prescribed thermal boundary conditions.This
part of the temperature � eld is always present and leads to a one-
dimensional radial thermal resistance.

Applicationof theboundaryconditionsyields the followingresult
for the thermal resistance of the compound annulus on a per unit
length basis:

R1D D .b=a/

2¼k1
C .c=b/

2¼k2
C 1

2¼ha
(16)

or, in dimensionless form,

R¤
1D D ·

.1=½1/

2¼
C .1=½2/

2¼
C ·

2¼ Bi
(17)

where R¤ D k2 RL, 0 < ½1 D a=b < 1, 0 < ½2 D b=c < 1, · D
k2=k1 , and Bi D ha=k1.

Spreading Resistance

The spreading resistance part requires a solution to the two-
dimensional eigenvalue problem for each layer. Application of the
thermal boundary conditions at the interior surface, Eq. (6), and, at
the interface, Eqs. (7) and (8), gives the solution for C1 , C2, and
D1 in terms of the unknown coef� cient D2. The solution to this
complex set of equations was obtained with the computer algebra
system Maple V (Ref. 5).

The � nal coef� cient D2 is obtainedby taking a Fourier expansion
of the exterior surface boundary condition Eqs. (9) and (10). This
results in

D2 D
2

®Gn

Z
¯

0

³
K

k2

´"

1

³
Ã

¯

´2
#¹

cos.¸nÃ/ dÃ (18)

where Gn is a constant that depends on the shell thicknesses, con-
ductivities, and heat transfer coef� cient. However, in practical ap-
plications the thermal resistance is of greater importance than the
temperature � eld in each layer.

The thermal spreading resistance is de� ned as

Rs D Nµs=Q (19)

where

Nµs D 1
¯

Z ¯

0

µ2.c; Ã/ dÃ (20)

It is often convenient to de� ne a dimensionless spreading resis-
tance parameter

Ãs D k2 Rs L (21)

where L D 1 will be assumed.
Combining the results for the � nal Fourier coef� cient D2 and

the de� nition of the spreading resistance parameter results in the
following expression for the dimensionless spreading resistance:

Ãs D k2 Rs D 4
p

¼

0
¡
¹ C 3

2

¢

0.¹ C 1/
¢

1X

n D 1

’n
sin.n¼¯=®/®

¯2n2¼ 2
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¯

0
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³
Ã

¯
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cos.n¼Ã=®/ dÃ (22)

where the parameter ’n determines the effect of shell thicknesses,
layer conductivities,and heat transfer coef� cient. It is de� ned as

’n D
µ

.F1 Bi C F2¸n/· C .F3 Bi C F4¸n/

.F4 Bi C F3¸n/· C .F2 Bi C F1¸n/

¶
(23)

where

F1 D 1 .½1/2¸n C .½2/2¸n .½1½2/2¸n

F2 D 1 C .½1/2¸n C .½2/2¸n C .½1½2/2¸n

F3 D 1 C .½1/2¸n .½2/2¸n .½1½2/2¸n

F4 D 1 .½1/2¸n .½2/2¸n C .½1½2/2¸n

For an isotropic annulus, · D 1, ’n may be simpli� ed to give

’n D
µ

G1 Bi C G2¸n

G2 Bi C G1¸n

¶
(24)

where

G1 D 1 ½2¸n G2 D 1 C ½2¸n

where ½ D a=c and k2 D k1 D k.
Evaluation of the the integral6 in Eq. (22) gives the � nal general

relation for the spreading resistance in the following form:

Ãs D 2
¼ 2²

0

³
¹ C 3

2

´ 1X

n D 1

³
2

n¼²

´¹ C 1
2 sin.n¼²/

n2
J¹ C 1

2
.n¼²/ ’n

(25)
where ² D ¯=®.

The general solution is valid for any heat � ux distribution de-
� ned by Eqs. (13) and (14) with ¹ > 1. However, only three
cases of practical interest will be presented. These are the uniform
� ux .¹ D 0/, parabolic � ux .¹ D 1

2 /, and inverted parabolic � ux
.¹ D 1

2 /. The invertedparabolic � ux distributionis representative
of the isothermal boundary condition for values of ² D ¯=® < 0:52.

The general solution for the spreading resistance in an annular
sectorhas the same formas that for a � nite compound� ux channel,2

with the exception of the parameter ’n . The parameter ’n is a func-
tion of the radii ratio, conductivityratio, and Biot number, whereas
for the � nite compound � ux channel it is a function of the layer
thicknesses, conductivity ratio, and Biot number. Further discus-
sion on the similarities of the two solutions will be presented later
as part of a parametric study.

Total Resistance

The total dimensionlessresistanceof the compoundannulusmay
now be obtained by combining the uniform � ow resistance and
spreadingresistance.For a compoundannuluscontaining N equally
spaced heat sources, the total thermal resistance is obtained from

R¤
T D Ãs=.2N / C R¤

1D (26)

or, for the basic element shown in Fig. 1, the total thermal resistance
is

R¤
T ;e D Ãs C .2¼=®/R¤

1D (27)

Results
Several special cases may be obtained from the general solution,

Eq. (25). Each of these cases represents a particular heat � ux dis-
tribution. Three cases of particular interest are inverted parabolic
� ux distribution ¹ D 1

2
, the uniform � ux distribution ¹ D 0, and

the parabolic � ux distribution ¹ D 1
2 . In general, the exact � ux dis-

tribution is not always known. These special cases provide a means
to bound the results for the thermal spreading resistance.

Special Cases

The general solution for the compound annulus simpli� es for
three special cases of the the heat � ux distribution.The results are
given hereafter for ¹ D 1

2 ; 0; 1
2 .
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For ¹ D 1
2
,

Ãs D 2

¼ 2²

1X

n D 1

J0.n¼²/ sin.n¼²/

n2
’n (28)

For ¹ D 0,

Ãs D 2

¼ 3²2

1X

n D 1

sin2.n¼²/

n3
’n (29)

For ¹ D 1
2 ,

Ãs D 4
¼ 3²2

1X

n D 1

J1.n¼²/ sin.n¼²/

n3
’n (30)

The preceding cases have the following relationship:

Ãs

¡
¹ D 1

2

¢
< Ãs .¹ D 0/ < Ãs

¡
¹ D 1

2

¢
(31)

This allows the variation in the thermal resistance to be estimated
when the precise heat � ux distribution is not known.

Thin Shell Limit

When the radius of curvature is large relative to the thickness of
the shell, the results for the compound annulus may be modeled
using the results for a rectangular � ux channel (Fig. 4).

The solution for a compound � ux channel was obtained by
Yovanovich et al.2 for the uniform � ux distribution and for an
isotropic � ux channel for the heat � ux distribution de� ned by
Eqs. (13) and (14). The two solutions may be used to obtain an
expression for the spreading resistance in a compound � ux channel
for any � ux distribution parameter ¹. This result for the con� gura-
tion shown in Fig. 5 is

Ãs D k1 Rs D 1

¼ 2²
0

³
¹ C 3

2

´

£
1X

m D 1

³
2

m¼²

´¹ C 1
2

¢ sin.m¼²/

m2
J

¹ C 1
2
.m¼²/ Ám (32)

where the contributionsof the layer thicknesses t1 and t2, the layer
conductivities k1 and k2, and the uniform conductance h to the
spreading resistance are determined by means of the parameter Ám

given by

Fig. 4 Compound � ux channel.

Fig. 5 Basic element for two heat sources.

Ám D
.®e4±t1 C e2±t1 / C ’

¡
e2±.2t1 C t2 / C ®e2±.t1 C t2/

¢

.®e4±t1 e2±t1 / C ’
¡
e2±.2t1 C t2 / ®e2±.t1 C t2/

¢ (33)

where

’ D
m¼ C Bi=·

m¼ Bi=·

® D .1 ·/=.1 C ·/

with · D k2=k1 , Bi D hc=k1 , and ± D m¼=c.
The result given by Eq. (32) may be compared with the result for

the compound annulus Eq. (25) provided that

Ãs;annulus D 2Ãs;strip (34)

because the solution for the strip is for two elements in parallel.

Parametric Studies

The general result given by Eq. (25) depends on seven parame-
ters. The large number of parameters makes it dif� cult to address
the effect that each parameter has on the solution.A number of sim-
pli� cationswill be made such that the importantcharacteristicsmay
be examined. First, the effect of the heat � ux distributionparameter
¹ will not be considered because Eq. (31) describes this effect. In
all cases presented in this section, ¹ D 0. Furthermore, because the
effect of conductivity ratio · will increase or decrease the thermal
spreadingparameter accordingly,only the isotropic case · D 1 will
be considered. Finally, the solution is also dependent on the size
of the sector ® through the de� nition of the eigenvalues.The sector
having ® D ¼=2, as shown in Fig. 5, is chosen.These simpli� cations
result in

Ã D f .²; Bi; ½/ (35)

This functional dependence will illustrate the effects of relative
contact size ², � lm coef� cient Bi , and relative shell thickness ½ .

The solution for the spreading parameter Ã are presented in
Figs. 6–8 for three values of epsilon: ² D 0:25; 0:5; and 0.75, as
a function of the radii ratio ½ for several values of the Biot num-
ber Bi . All of the results were computed using MATLAB® (Ref. 7)
mathematics software. In all cases, at some critical value of ½ , the
results approach a constant value regardless of the value of the Biot
number.The asymptoticresult is equal to the valueof the the spread-
ing parameter for a semi-in� nite � ux channel.2 This is a result of the
parameter ’ ! 1 in Eq. (25) for all terms in the summation. This
reduces the general solution to that reported by Yovanovich et al.2

for the semi-in� nite � ux channel.
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Fig. 6 Spreading parameter for ² = 0:25.

Fig. 7 Spreading parameter for ² = 0:5.

Fig. 8 Spreading parameter for ² = 0:75.

Equivalence of Annular Sector and Flux Channel Solutions

Finally, it is desirable to compare the solutions for an annular
sector and � nite � ux channel to examine the effect that curvature
has on the spreading parameter. In the limit of ½ ! 0, the solution
exhibits characteristicsof the semi-in� nite � ux channel. In the limit
of ½ ! 1, the solutionshouldexhibitcharacteristicsof the � nite � ux
channel as curvature effects become negligible. To compare both
Eqs. (25) and (32) on the same plot, a new dependent parameter
will be de� ned. This parameter is chosen to be the ratio of the shell
thicknessto the sizeof the � uxchannel.To converttheannularsector
to a � ux channel, as shown in Fig. 9, the following parameters will
be de� ned:

te D c a (36)

re D .a C c/=2 (37)

such that

¿e D te=®re D .2=®/[.1 ½/=.1 C ½/] (38)

Bie D ®Bi (39)

²e D ² (40)

where the subscript e denotes the the equivalent rectangular � ux
channel parameter in terms of the annular sector parameters. A
comparison between Eqs. (25) and (32) is made for a range of Biot
number, ², and ½ using Eqs. (38–40). This allows both limits of
thick and thin shells to be compared with the � ux channel solution
as the overall thickness increases or decreases. The results of this
comparison are presented in Figs. 10–12.

It is seen in Figs. 10–12 that, for all ¿ , the solutionsare equivalent.
In Figs. 10–12, the maximum deviationis approximately1.3%. This

Fig. 9 Conversion of annular sector to rectangular � ux channel.

Fig. 10 Comparison of � ux channel and annular sector results for
² = 0:25.
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Fig. 11 Comparison of � ux channel and annular sector results for
² = 0:5.

Fig. 12 Comparison of � ux channel and annular sector results for
² = 0:75.

suggests that the effect of curvature on the spreading parameter is
small. In most practical applications, the strip solution would pro-
vide adequate results. However, the total resistance,which includes
the one-dimensional� ow solution,will be affected by the curvature
of the system.

Concluding Remarks
A general solution for the thermal spreading resistance in a com-

pound annular sector � ux channel was obtained. This solution may
be used to model the spreading resistance in a compound annulus
for any number of equally spaced heat sources (or sinks). Results
were obtained for three heat � ux distributions: the uniform � ux,
parabolic � ux, and inverse parabolic � ux pro� les. It was shown that
the general solution for the annular sector is similar to that of the
� nite rectangular � ux channel. For the case of a thin shell, it was
shown that the results approach that of the � nite rectangular � ux
channel, and, in the case of a thick shell, the results also approach
that of a semi-in� nite rectangular� ux channel.Finally, it was shown
that the effect of curvature on the thermal spreading parameter is
small.
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