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Laminar Forced Convection Modeling of Isothermal
Rectangular Plates

M. M. Yovanovich¤ and P. Teertstra†

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

A composite model for area-average Nusselt number for forced, laminar � ow parallel to a � nite, isothermal
rectangular plate for a wide range of Reynolds numbers is proposed. The correlation equation is based on the
superposition of the dimensionless shape factor and a modi� ed laminar � ow boundary-layer asymptote with an
empirically determined interpolation parameter. The Nusselt and Reynolds numbers and the dimensionless shape
factor are based on either the rectangle side dimension parallel to the � ow direction or the square root of the heat
transfer area. The proposed correlation equationsare applicable to rectangles with side dimensionratios in a range
from 1 to 10. Extensive numerical results were used to � nd the optimal values of the interpolation parameter to
provide close agreement between the correlation equation predictions and the numerical values.

Nomenclature
A = plate surface area, ´L £ W , m2

C; CT = boundary-layersolution coef� cients
F.Pr/ = Prandtl number function, Eq. (14)
h = convective coef� cient, W/m2K
k = thermal conductivity,W/mK
L = long plate dimension, m
L = general length scale, m
NuL = Nusselt number, ´QL=k A.Tw ¡ T1/
n = interpolationparameter, Eq. (18)
Pr = Prandtl number
Q = heat � ow rate, W
Q¤

L = dimensionless heat transfer rate, ´QL=k A.Tw ¡ T1/
ReL = Reynolds number, ´U1L=º
Re¤p

A = modi� ed Reynolds number, Eqs. (26) and (27)
S = conduction shape factor, m
S¤ = dimensionless conduction shape factor, Eq. (7)
Tw = plate surface temperature, ±C
T1 = ambient temperature, ±C
U1 = freestream velocity, m/s
u; v; w = velocity components, m/s
V = velocity (vector form), m/s
W = short plate dimension, m
X; Y; Z = computational domain size, m
x; y; z = Cartesian coordinates
® = thermal diffusivity, m2/s
º = kinematic viscosity, m2/s
Á = dimensionless temperature, ´.T ¡ T1/=.Tw ¡ T1/

Subscripts
p

A = with square root of plate area A
L = with long plate dimension
W = with short plate dimension
w = plate surface
1 = freestream

Introduction

L AMINAR forced convective heat transfer from isothermal � -
nite rectangular plates over a range of Reynolds number such
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as 1 · Re · 5000 is a problem that has not been addressed
fully in the open literature. Correlations for the local and av-
erage Nusselt number are limited to two-dimensional laminar
boundary-layer� ow, such as the Blasius–Pohlhausen solution (see
Refs. 1–3) and are available for a limited Reynolds number range,
such as 100 < Re < 105. Therefore, they cannot be used for � -
nite plates at small Reynolds numbers, where thermal diffusion
becomes important and the resulting temperature � eld is three
dimensional.

A composite model for the Nusselt number that is reported to
be valid for a wide range of Reynolds and Prandtl numbers was
published recently.4 The correlationequation includes the diffusive
limit for zero � uid � ow and the boundary-layer limit that accounts
for turbulent effects. The composite model is based on the linear
superposition of the two limits, where the square root of the total
surface area is used as the length scale. However, this model is lim-
ited to two-dimensional boundary-layer � ow and is not applicable
to the � nite rectangular plate problem.

The major objectives of this paper are 1) to develop a composite
correlation equation that accurately predicts the average Nusselt
number for all � uids Pr > 0:5 for a range of the Reynolds number
0 < ReL < 5000, 2) to examine the effect of the length scale used
in the dimensionless parameters such as the Nusselt and Reynolds
numbers and the shape factor, and 3) to report accurate numerical
values of the Nusselt number for the � nite rectangular plate over a
wide range of Reynolds numbers and aspect ratios.

Physical Problem Description
Consider steady, laminar � ow of a constant property � uid of

large extent and temperature T1 parallel to a � nite isothermal rect-
angular plate of zero thickness and side dimensions L and W ,
where L=W ¸ 1. The upper surface is maintained at temperature
Tw and the lower surface of the plate is assumed to be adiabatic,
such that the total heat transfer area is A D LW . Two � ow cases
are considered as shown in Fig. 1: Fig. 1a shows � ow parallel
to the longer side dimension L and Fig. 1b � ow parallel to the
shorter side dimension W . The ratio of the side dimensions of
the rectangular plate ranges between 1 for the square plate and
10 for a long rectangular plate. The Reynolds number based on
the freestream velocity U1 and the plate dimension parallel to the
� ow direction will range from 0.1 up to 5000. As the Reynolds
number increases from small to large values, the local heat � ux
distribution changes between two cases. When the Reynolds num-
ber is very small, the heat � ux attains its maximum values along
the four edges of the rectangular plate. For larger values of the
Reynolds number the maximum values of the local heat � ux oc-
cur along the leading edge, where the � uid � rst encounters the
plate.
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a) Flow along long plate dimension L

b) Flow along short plate dimension W

Fig. 1 Schematics of physical problem.

Mathematical Problems
The governing differential equations in vector form for the full

three-dimensionalproblem are the continuity equation,

r ¢ V D 0 (1)

the momentum equation for zero pressure gradient along the plate
surface,

ºr2V D .V ¢ r/V (2)

and the energy equation with negligible viscous heating,

®r2T D .V ¢ r/T (3)

where the Laplacian operator in Cartesian coordinates is

r2 D @2

@x2
C @2

@y2
C @2

@z2
(4)

The constant thermophysical properties that appear in the momen-
tum and energy equations are the kinematic viscosity º and the
thermal diffusivity ®, respectively. It has been assumed that there
is negligible viscous heating because the � ow velocity is small. All
buoyancyeffects have been neglected,such that as ReL ! 0 the ve-
locity at all points in the � uid approaches0 and heat transfer occurs
by conduction alone.

There are no analytical solutions of the Navier–Stokes equations
available for the full range of the Reynolds number from small
values, ReL D 0, to large values, ReL D 5000. There are, how-
ever, two well-known limiting cases. When the Reynolds num-
ber lies in the range 100 < ReL < 105 and the thermal and hy-
drodynamic boundary-layer thicknesses are much smaller than the
plate dimensions L and W , the Navier–Stokes equations reduce to
the two-dimensional boundary-layerequations. The solution of the
boundary-layer form of the equations for the � at plate has been
well documented in the literature.1¡3 When the Reynolds number
approachesvery small values such as ReL < 0:1, the solution of the
energy equationwill approach the solutionof the three-dimensional
Laplace equation

r2T D 0 (5)

For all problems, the dimensionless heat transfer rate from the sur-
face of the isothermal rectangularplate is obtained from the relation

Q¤
L D

QL
k A.Tw ¡ T1/

D L
A

Z W

0

Z L

0

¡ @Á

@y
dx dz (6)

where Q is the total heat transfer rate from the plate, L is some
characteristic length scale, A is the total surface area, and Tw and
T1 are the temperatures of the plate and the � uid at points re-
mote from the center of the plate. The dimensionless tempera-
ture is Á D [T .x; y; z/ ¡ T1]=.Tw ¡ T1/. The thermal and hydro-
dynamic boundaryconditionson the surface of the plate are T D Tw

and u D v D w D 0. At points remote from the center of the plate,
T ! T1 and u ! U1 , and both velocity components v and w go
to 0.

Solutions of the Limiting Problems
Analyticalsolutionsto the full equationsfor arbitraryvaluesof the

Reynolds number are not available. Results of the available analyt-
ical and numerical solutions for limiting cases of the full equations
are considered in the following sections. These relations will be
used in subsequent sections to develop a composite model for the
dimensionless heat transfer rate over a wide range of the Reynolds
number.

Diffusive Limit Solution

The dimensionless heat transfer rate for zero velocity (called
the diffusive limit) is obtained from the solution of the three-
dimensionalLaplace equation.The dimensionlessheat transfer rate
for this limit is called the dimensionless shape factor,5 de� ned
as

Q¤
L D S¤

L D SL=A (7)

for the limit ReL ! 0. Analyticalsolutionsfor the conductionshape
factor for the isothermal rectangular plate are not available; how-
ever, Yovanovich5 has shown that the analytical solution for the
isothermal elliptical disk can be used to approximate the numerical
results6 for the isothermal rectangular plate with acceptable accu-
racy. This approximate solution requires that the heat transfer areas
and the aspect ratios of the rectangular plate and the elliptical disk
are similar and that the characteristic length scale is based on the
square root of the total active area. The recommended relations for
the dimensionless shape factor for the isothermal rectangular plate
are5

S¤p
A

D
.1 C

p
L=W /2

p
¼ L=W

; 1 · L=W · 5 (8)

and

S¤p
A

D 2
p

¼ L=W

.4L=W /
; 5 < L=W < 1 (9)

The dimensionless shape factor depends weakly on the rectangle
aspect ratio L=W ¸ 1 when L D

p
A. The maximum differencebe-

tween the predicted values and previously determined numerical
values6 of S¤p

A for the range 1 · L=W · 4 is less than 1%. It is
expected that the two relations should providevalues that are within
§ 3% of the numerical estimates for values of L=W > 4. When the
side length dimensions L or W are selected as the length scale, the
dimensionless shape factors are obtained from

S¤
L D

p
L=W S¤p

A
(10)

S¤
W D

p
W=LS¤p

A
(11)

Boundary-Layer Solutions

The two-dimensional boundary layer equations were solved by
Blasius and Pohlhausen (see Ref. 1), and these solutions are pre-
sented in many � uids and heat transfer texts.1¡3 For laminar � ow
over an isothermalplate of length L , the area-averageNusselt num-
ber for Pr > 0:5 and 100 < ReL < 105 is given by

NuL D C Re
1
2
L Pr

1
3 (12)

where the most frequently quoted value for the coef� cient is
C D 0:664. According to Kays and Crawford,3 the true value of
the coef� cient for the Pr ! 1 limit is C D 0:677. Yovanovich
et al.7 obtained an approximate analytical solution that is based
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on a linearization of the momentum and energy equations. They
reported that the average Nusselt number can be obtained from

N uL D 2 F.Pr /Re
1
2
L (13)

where the Prandtl number function is de� ned as

F.Pr / D
»

Pr
.

¼

h
1 C

±
CT Pr

1
3

²2i 1
2

¼ 1
2

(14)

which is valid for 0 < Pr < 1. The limiting values of the Prandtl
number function were reported as

F .Pr/ ! .1=
p

¼/
p

Pr ; Pr ! 0 (15)

F.Pr/ ! .1=
p

¼CT /Pr
1
3 ; Pr ! 1 (16)

The numericalvalueof the constantCT that appears in the linearized
energy equation can be determined in two ways. When the wall
heat � ux of the proposed linearized model is matched against the
value obtained from Pohlhausen (see Ref. 1), a value of CT D 2:77
is obtained. Matching the enthalpy � ux into the thermal boundary
layer predicted by the proposed model against the value obtained
by means of the integral energy equation solution results in a lower
value of the coef� cient, CT D 2:13. When a value of CT D 2:31 is
assumed, which is close to various averages of these two values, the
linearized model gives a boundary-layer solution identical in form
to Pohlhausen(see Ref. 1) except for a larger coef� cient,C D 0:742.

Proposed Composite Model
The proposed model consists of two components, the laminar

boundary-layersolution and the solution for thermal diffusion.The
laminar boundary-layersolution has the form

NuL D 0:742Re
1
2
L Pr

1
3 (17)

which is valid for Pr > 0:5 and 100< ReL < 105 . In the proposed
boundary-layer solution, the Nusselt and Reynolds numbers are
based on the arbitrary length scale L. The conventional character-
istic length used in the Nusselt and Reynolds numbers is the length
of the plate in the � ow direction, L or W . The appropriate length
scale will arise from the subsequent analysis.

The proposed composite correlation equation is based on the
Churchill–Usagi8 method of combining asymptotic solutions

NuL D
h¡

S¤
L
¢n C

±
0:742Re

1
2
L Pr

1
3

²ni1=n

(18)

where the interpolation parameter n ensures that the model pre-
dicts accurate values of the Nusselt number for intermediate values
of the Reynolds number. The interpolation parameter is expected
to be dependent on the aspect ratio of the rectangular plate when
the conventionallength scales are used in the Nusselt and Reynolds
numbers and the dimensionlessshape factor.The appropriatevalues
of this parameter will be found by � tting the proposed model to nu-
merical values obtained by means of a well-establishedcommercial
computational � uid dynamics (CFD) code.

Numerical Procedure
The analytical forced convection model developed in the pre-

ceding section was validated and optimized using results obtained
from simulations performed using FLOTHERM,9 a commercial � -
nite volume CFD software package.The FLOTHERM package uti-
lizes the standard � nite volume analysis techniquesas presented by
Patankar.10 These CFD simulations were used to model the � uid
� ow and heat transfer within an air-� lled region surrounding the
isothermal plate, as shown in Figs. 2a and 2b. The physical models
selected for the numerical solutionswere steady-state,laminar � ow,
with constant� uid properties,no buoyancyforces, and no radiation.

a) Flow along short plate dimension W

b) Flow along long plate dimension L

Fig. 2 Schematics of CFD solution domain.

The � at plate was modeled as an isothermal, no-slip boundary
in contact with the moving � uid. An adiabatic, zero-shear symme-
try boundary condition was applied along the midplane of the plate
in the � ow direction as shown in Fig. 2. The uniform freestream
velocity U1 and ambient temperature T1 were speci� ed at the up-
stream boundary, and the downstream and lateral domain bound-
aries were set to atmospheric (zero) pressure, allowing heat and
mass to exit freely from the system. The plate and ambient air tem-
peratures were set to Tw D 40±C and T1 D 20±C, respectively, and
constant air propertiesevaluatedat the � lm temperature300 K were
assumed.

Becauseof the large rangeofReynoldsnumberproposedfor these
simulations,1 · Re · 5000, it was anticipatedthat differentcompu-
tationaldomain sizeswould be required,dependingon the Reynolds
number. For small Reynolds number, Re < 10, the heat transfer is
dominated by conduction, requiring a large computational domain
to model a � uid region of in� nite extent. This same solutiondomain
is also valid for the diffusive limit, the limiting case when Re ! 0,
where heat transfer is by conduction only. At the large Reynolds
number limit, Re > 1000, the majority of the heat transfer from
the plate is by convection through a thin laminar boundary layer.
At this limit, the size of the domain can be substantially reduced,
but many more control volumes concentratednear the plate surface
are necessary to resolve accurately the large temperature gradients.
The dimensions of the solution domain in the x; y, and z direc-
tions are characterized by X , Y , and Z , respectively, as shown in
Fig. 2. Typical values for these dimensions used in the CFD simula-
tions, nondimensionalizedusing the plate length L , are presented in
Table 1.

To generate accurate results using the CFD model, it is necessary
to demonstrate that the effects of the size and number of controlvol-
umes on the solution have been minimized. Because of the distinct
differencesbetween the computationaldomains for small and large
Reynolds numbers, two grid convergence studies were performed.
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Table 1 Typical CFD solution
domain dimensions

Re X=L Y=L Z=L

!0 100 50 50
1 100 50 50
10 100 50 50
100 50 20 20
1000 15 1.5 7

Table 2 Summary of test cases for CFD simulations

Flow
L=W direction Re

10 W ! 0, 1, 10, 100, 500
5 W ! 0, 1, 2, 4, 10, 20, 40, 100,

200, 400, 1000
2 W ! 0, 1, 2.5, 5, 10, 25, 50,

100, 250, 500, 1000, 2500
1 L ! 0, 1, 2, 5, 10, 20, 50, 100,

200, 500, 1000, 2717.3, 5000
2 L ! 0, 1, 2, 5, 10, 20, 50, 100,

200, 500, 1000, 2000, 5000
5 L ! 0, 1, 2, 5, 10, 20, 50, 100,

200, 500, 1000, 2000, 5000
10 L ! 0, 1, 10, 100, 1000

For the square plate with Re D 2717:3, two test cases were ex-
amined. The re� ned grid used in the second case had a 5.3 times
increase in the number of control volumes over the � rst, to 144,000,
and a 60% reduction in the thickness of the � rst layer of control
volumes in contact with the plate surface. The resulting change in
Nusselt number was only 0.5%, indicatingthat a convergedsolution
had been achieved.The � ner grid from the secondtest case was used
for all remaining large Reynolds number simulations.

The second grid convergence study involved two test cases for
the diffusive limit for L=W D 5 with � ow parallel to the long side
length L . Re� ning the grid by a 3.3 times increase in the number
of control volumes and a 40% reduction in the thickness of the � rst
layer of control volumes in contactwith the plate surface resulted in
a change in Nusselt number of 2.4%. This small change in Nusselt
number for a relatively large change in grid parameters indicated
that convergencehad been achieved, and the re� ned grid was used
in all remaining small Reynolds number simulations.

The accuracy of the numerical results can be veri� ed by compar-
ison with the available exact solutions at the two limiting cases, the
diffusive limit and the laminar boundary-layer limit. For the diffu-
sive limit, the result from the re� ned grid for L=W D 5 was within
0.6% of the value predicted by the available analytical expression
[Eq. (10)]. For the large Reynolds number, Re D 5000, the numeri-
cal prediction for L=W D 1 was within 0.7% of the value resulting
from the laminar boundary-layersolution.This excellentagreement
between the CFD results and the exact solutions at the two limiting
cases validated the accuracy of the numerical predictions.

Numerical Results and Discussion
With the size and discretizationof the computationdomain estab-

lished, the CFD model was used to simulate a wide range of aspect
ratios and Reynolds numbers, for both � ow along the long plate
dimension L and the short plate dimension W , as shown in Table 2.

The numerical results for these test cases are compared with the
predictionsof the proposed model [Eq. (18)] in Fig. 3. The data are
nondimensionalizedusingNusseltandReynoldsnumbersde� nedas
follows.For thebulkvelocityparallelto the shortplatedimensionW ,

Nu D N uW D
QW

k A.Tw ¡ T1/
(19)

Re D ReW D
U1 W

º
(20)

and for � ow parallel to the long plate dimension L ,

Fig. 3 Comparison of data and model with L and W as characteristic
length.

Nu D NuL D
QL

k A.Tw ¡ T1/
(21)

Re D ReL D U1 L=º (22)

The data are compared with the following form of the proposed
model:

Nu D
h
.S¤/n C

±
0:742Re

1
2 Pr

1
3

²ni1=n

(23)

where Nusselt number and Reynolds number are de� ned in
Eqs. (19–22). The conduction shape factor S¤ is determined by
Eq. (11) for � ow along the short plate dimension W and by Eq. (10)
for � ow parallel to L.

When the numerical data were used, optimized values for the
interpolation parameter n were determined that minimized the de-
viation between the proposed model and the data. The resulting
interpolation parameters for all test cases vary according to aspect
ratio and � ow direction in the range

0:97 · n · 1:68

These optimized values for the interpolation parameter n were
correlated separately for each � ow direction as a function of the as-
pect ratio. For bulk velocityparallel to the short plate dimension W ,

n D 1:42 ¡ 0:28 log10.W=L/ (24)

and for � ow along the long plate dimension L ,

n D 1:42 ¡ 0:45 log10.L=W / (25)

For the square plate where L D W , both correlation equations pro-
vide the same value. When the proposed model [Eq. (23)] and the
interpolationparameter n from the appropriatecorrelationequation
(24) or (25) are used, the numerical results are predicted within a
maximum percent differenceof 4.5% and an rms percent difference
of 1.9%.

The largevariationin the valuesof the interpolationparameter for
the different aspect ratio and � ow direction cases can be attributed
to the use of the plate dimensions L or W as the characteristiclength
in the dimensionless quantities Nusselt number, S¤, and Reynolds
number. From Fig. 3 it is seen that, for large Reynolds number,
the Nusselt number becomes independent of the aspect ratio and
� ow direction and approaches a single asymptote, corresponding
to the two-dimensional boundary-layer solution described earlier.
However, for small values of Reynolds number, there is an order of
magnitude difference between the results for L=W D 10 when the
� ow is in the L and W direction. These differences in the diffusive
limit change the shape of the Nusselt number vs Reynolds number
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Fig. 4 Comparison of data and model with
p

A as characteristic
length.

curves, requiringdifferent interpolationparameters for the model to
� t the data properly.

Previous research5 has shown that the use of the square root of
the active surface area of the body as the characteristic length can
reduce the variation of the results as a function of aspect ratio. In
addition, the diffusive limit, Eqs. (8) and (9), is independent of the
� ow direction when

p
A is used as the characteristic length.

The data are recast using
p

A as the characteristic length, and
the results, expressed as Nup

A are plotted as a function of Re¤p
A in

Fig. 4. The modi� ed Reynolds number Re¤p
A has been introduced

to account for � ow direction effects in the boundary-layersolution.
For bulk velocityparallel to the short dimensionof the plate W , this
modi� ed Reynolds number is de� ned as

Re¤p
A

D Rep
A

p
L=W (26)

and for � ow along the long plate dimension L ,

Re¤p
A

D Rep
A

p
W=L (27)

The proposed model is recast in a similar manner,

Nup
A D

h¡
S¤p

A

¢n C
±

0:742Re
¤ 1

2p
A

Pr
1
3

²ni1=n

(28)

Equation (28) is plotted in Fig. 4 for the square plate only, L D W .
Because the results for the square plate are unaffected by recasting
the model in terms of

p
A, the interpolationparameter used earlier,

n D 1:42, is retained.
From Fig. 4 it is seen that the variationbetween the data for differ-

ent aspect ratios and � ow directions has been reduced signi� cantly.
The data for the majority of test cases, including all aspect ratio
cases for � ow in the W direction and L=W · 2 with � ow in the
L direction, are in excellent agreement with the proposed model
when n D 1:42. The only substantial differencesbetween the model
and the data occur in the transition region for the large aspect ratio
rectangles, L=W D 5:0 and 10:0, with � ow parallel to the long plate
dimension L .

The proposed model using a � xed value of the interpolation pa-
rameter n D 1:42 is compared with the CFD data for three aspect
ratios, L=W D 2:0; 5:0, and10:0, for � ow in bothdirectionsin Fig. 5.
In Fig. 5a the numerical results for L=W D 2:0 with � ow parallel
to long and short plate dimensions are compared with the model.
Through the use of the square root of areaas the characteristiclength
and the � xed interpolation parameter value, the model is indepen-
dent of � ow directionand can be representedon the plot by a single
curve. The data in Fig. 5a also approach common asymptotes for

a) L/W = 2:0

b) L/W = 5:0

c) L/W = 10:0

Fig. 5 Comparison of data and model.

large and small Re¤p
A , but show small deviationsof approximately

2–3% between the results for the two � ow directions in the inter-
mediate region, Re¤p

A
¼ 10.

The variations between the numerical data for the two � ow di-
rections is more evident for the L=W D 5:0 case, with a maximum
difference of 20% at Re¤p

A
D 10 as shown in Fig. 5b. These differ-

ences in the data for � ow parallel to the long plate dimension L and
� ow along the short dimension W are the result of edge effects not
accounted for in the model. For the � nite plate, the boundary layer
tends to become thinner near the edges due to diffusion, leading to
enhanced heat transfer in these regions. This effect is most evident
in the intermediateregion,5 · Re¤p

A · 50, where boundary growth
occurs quickly and the heat transfer is not conduction dominated.
The edge effects tend to enhance heat transfer in cases where the
bulk � uid velocity is parallel to the long plate dimension L , whereas
the effects are minimized in cases with � ow along the short plate
dimension W , resulting in a lower Nup

A. With a � xed value for
the interpolationparameter,n D 1:42, the model passes between the
data, 7% above the lower data set and 13% below the upper data set
at Re?p

A D 10.
In Fig. 5c, the model with n D 1:42 for L=W D 10 once again

passes through the middle of the numerical data for � ow in the L
and W directions.The variationbetween the data in the intermediate
region for the two � ow directionsis the largestof the three cases,due
to the increase in edge effects for the larger aspect ratio. The model
underpredicts the data for � ow parallel to the long plate dimension
L by a maximum of 26% at Re¤p

A D 10 and overpredicts the data
for � ow in the W direction by a maximum of 6% at Re¤p

A D 10.
In general, the proposed model is in close agreement, within

6–7%, of all of the data for � ow in the W direction and L=W · 2
for � ow in the L direction.The differencesbetween the data and the
model for L=W D 5:0 and 10:0 are larger in the transition region
due to edge effects.
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Temperature distribution data from the CFD simulations in the
region surrounding the plate are shown in Figs. 6–8. Figures 6–8
contain two sets of temperature contours: isotherms in an xy plane
along the midplane of the plate, z D W=2 or z D L=2 (Figs. 6a, 7a,
and 8a) and isotherms in the xz plane at the plate surface, y D 0
(Figs. 6b, 7b,and8b). Four different� ow ratesareplottedin each set,
starting with the diffusive limit, Re ! 0, followed by Re D 1; 10,
and 100, where Reynolds number is de� ned by Eqs. (20) and (22).

Each of the sets of contour plots presented in Figs. 6–8 demon-
strate the smooth transition between conduction-dominated (zero
� ow) and boundary-layer� ow. At the diffusive limit, the isotherms
extendradiallyoutward from the plate, quicklybecomingspherical-
shaped contours consistent with pure conduction into a half-space.
As � ow is introduced, the freestream velocity begins to affect the
temperature distribution. At Re D 1, the isotherms near the plate
still resemble those in the diffusionproblem,but the outer isotherms
are distorted by the freestream velocity. At Re D 10, the advection
effects become stronger, a distinct thermal boundary layer begins
to form, and the problem begins to display two-dimensional char-
acteristics. Finally, at Re D 100, two-dimensional boundary-layer

a) Midplane, z = L/2 b) Plate surface, y = 0

Fig. 6 Temperature distribution for L/W = 5:0 with � ow in W direction.

a) Midplane, z = W/2 b) Plate surface, y = 0

Fig. 7 Temperature distribution for L/W = 1:0.

behavior has been established, and diffusion in the z direction per-
pendicular to the � ow is minimized.

From the temperature contours for L=W D 5:0 shown in Figs. 6
and 8, it appears that transition from diffusion to boundary-layer
� ow occurs more slowly for � ow in the L direction than for � ow
in the W direction. If the isotherms for Re D 100 are compared for
each � ow direction it is seen that the penetrationof the temperature
� eld into the � uid is much larger in Fig. 8 for � ow in the L direction
than in Fig. 6.

This behavior can be attributed to the use of the plate side di-
mensions as the characteristic length in Reynolds number. For each
L=W D 5:0 case, the value Re D 100 can be recast in terms of the
modi� ed Reynolds number, Re?p

A de� ned earlier. For � ow parallel
to the short plate dimension W , as shown in Fig. 6,

Re D 100; Re¤p
A

D 500

and for � ow in the L direction, as shown in Fig. 8,

Re D 100; Re¤p
A

D 20
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a) Midplane, z = W/2 b) Plate surface, y = 0

Fig. 8 Temperature distribution for L/W = 5:0 with � ow in L direction.

Based on these values for the modi� ed Reynolds number it can be
concludedthat at Re D 100 the L=W D 5:0 case shown in Fig. 8 is in
the middle of the transition region, whereas the same case in Fig. 6
behavesaccordingto the two-dimensional,boundary-layersolution.

Summary and Conclusions
A composite correlation equation has been developed that ac-

curately predicts the average Nusselt number for laminar forced
convection heat transfer from isothermal � nite rectangular plates.
The proposedmodel is valid for � uids with Pr > 0:5 and for a range
of the Reynolds number 0 < ReL < 5000 for � ow in both the W and
L directions.

It has been demonstrated that the use of the square root of the ac-
tive surface area as the scale length in the dimensionlessparameters
reduces the effectsof aspect ratio and � ow directionon the solution.
Using

p
A as the characteristic length in the correlation equation

reduces the range of the interpolation parameter to a single value
for all aspect ratios and � ow directions.

Accurate numerical results have been presented for the Nusselt
number for the aspect ratios L=W D 1:0; 2:0; 5:0, and 10:0 in the
range 0 < Re < 5000 with � ow in both the W and L directions.
When the plate side length, L or W , is used as the scale length,
and the interpolationparameter is determinedusing the correlations
provided,the proposedmodel and the data have a maximum percent
difference of 4.5% and an rms percent difference of 1.9%.

Contour plots for the temperature distribution in the region sur-
rounding the plate have been generated using the data from CFD
simulationsand are presentedfor three cases.The isothermsin these
contour plots demonstrate the smooth transition between the diffu-
sive limit, Re ! 0, and the two-dimensional, laminar boundary-
layer solution.
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