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Modeling Contact between Rigid Sphere and Elastic
Layer Bonded to Rigid Substrate

Mirko Stevanovic´, M. Michael Yovanovich, and J. Richard Culham, Member, IEEE

Abstract—An approximate mechanical model is developed for
predicting the radius of contact between a sphere and a layered
substrate. The complex solution of Chen and Engel is reduced to
the simple root finding procedure for the unknown contact radius.
Numerical data from the model of Chen and Engel are obtained
for several combinations of layer material. It is shown that with the
proper selection of dimensionless parameters the numerical results
fall on a single curve that is easily correlated. Radius predictions
show good agreement with experimental measurements.

Index Terms—Contact radius, elastic deformation, elastomer
layers, thermal constriction resistance.

NOMENCLATURE

Contact radius (m).
Contact radius corresponding to layer bound (m).
Contact radius corresponding to substrate bound (m).
Dimensionless contact radius.
Chen and Engel model.
Approach or penetration depth (m).
Elastic modulus (Pa).
Normal load (N).
Thermal conductivity (W/mK).
Constriction resistance (K/W).
Dimensionless constriction resistance.
Local polar coordinates.
Layer thickness (m).

Greek Symbols

Ratio of bounding radii .
Conductivity ratio ( ).
Poisson’s ratio.
Radius of sphere.
Relative layer thickness ( ).
Stress function.
Constriction parameter.
Laplacian operator.
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Fig. 1. Elastic contact of a sphere with a layered halfspace.

Superscripts

Dimensionless or reduced.
Subscripts

Layer, substrate.
Layer, substrate, sphere.

I. INTRODUCTION

T HE resistance to heat flow due to thermal spreading or con-
striction at a joint formed between contacts is an impor-

tant consideration in the development of high speed electronic
equipment. Critical interfaces formed between electronic pack-
ages or silicon flip chips and heat sinks necessitate the use of
soft, compliant interface materials to fill air gaps associated with
nonconforming wavy surfaces. Without the use of an interface
material, the overall thermal resistance between heat sources
and the surrounding air will rise significantly, resulting in an
increase in the operating temperature of integrated circuits and
a subsequent decrease in component reliability.

As shown in Fig. 1, typically a joint consists of a deformable
spherical body that penetrates into a thin, elastic layer, assumed
to be in perfect contact with an elastic substrate of large extent.
The temperature drop across the contact is related to the power
dissipation and the constriction resistance which depends on
the thermal conductivities of the three components, their elastic
properties (Young’s modulus, Poisson’s ratio), the radius of cur-
vature of the spherical body, the layer thickness and the applied
mechanical load. The constriction resistance can be reduced sig-
nificantly through the proper selection of a layer which has a
high thermal conductivity, low rigidity, and a thickness which is
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sufficiently large to cause the constriction on the layer-substrate
side of the joint to occur primarily within the layer.

Since the radius of the contact area is much smaller than the
radius of the sphere and the layered-substrate dimensions, the
contact is modeled both thermally and mechanically as a cir-
cular contact connecting two halfspaces: the sphere on one side
and the layered-substrate on the other.

The total constriction resistance of the sphere and the lay-
ered substrate is equal to the sum of two constriction resistances
which are in series, the resistance of the contact area on the
sphere and the resistance of the contact area on the layered sub-
strate. The total resistance is given by

(1)

where and are the thermal conductivities of the substrate
and the sphere, respectively. The thermal constriction parameter

is obtained from the solution of the Laplace equation
within the layer and the substrate. The dimensionless constric-
tion resistance is defined with respect to the unknown contact
radius and the substrate thermal conductivity

(2)

which gives

(3)

The constriction parameter for an isothermal contact
area is given by Dryden [4], where the relative layer thickness

and conductivity ratio are defined as

and

The thermal conductivity ratio is constant for a given
layer-substrate combination. The relative layer thickness varies
with the mechanical load, geometry and physical properties.
The evaluation of is not possible without first solving
the mechanical portion of the contact resistance problem for
the contact radius , which depends on the relative layer
thickness along with other dimensionless physical parameters.
The mechanical problem is a complex mathematical problem in
axisymmetric elasticity governed by the following differential
equation:

(4)

where is the stress function and is the Laplacian operator in
circular coordinates. The boundary conditions are of the mixed
type, with the surface deflection prescribed within the contact
area and the normal stress prescribed outside. For layered bodies
it is not possible to obtain a closed form solution of (4). Instead,
an iterative procedure must be used based on an initial estimate
of the contact radius that is then updated until the calculated
normal load equals the given load within some relative error
criterion.

The first objective of this work is to review the existing
mechanical models for predicting the radius of contact for the
problem of interest and to select the most general solution.

A second objective is to compute the contact radius for a
wide range of the physical properties, layer thickness, sphere
radius, and mechanical load by means of the most general
solution. And finally, a third objective is to find appropriate
dimensionless dependent and independent parameters which
best characterize the mechanical problem. By means of a proper
selection of dimensionless parameters the numerical results are
expected to fall on a single curve which can be correlated in a
relatively simple manner.

II. L ITERATURE REVIEW

The penetration of an elastic layer by a frictionless indenter
gives rise to two classes of problems referred to as complete
and incomplete contacts. The radius of the contact region,, is
given in the complete contact problem, such as in the case of
the flat-ended indenter. In the incomplete contact problem, the
radius of the contact region is not known a priori but rather is
a function of contact conditions, as in the case of a sphere/flat
contact.

The mechanical problem of interest is the contact between
a smooth sphere and a layer which is bonded to a substrate as
shown in Fig. 1. Vorovich and Ustinov [13] were the first to ob-
tain a solution for the problem of a rigid sphere contacting an
elastic layer on a rigid substrate. They determined the radius
of contact in terms of asymptotic expansions in powers of the
dimensionless layer thickness. Their results were only appli-
cable for thick layers where . Keer [5] extended the
analysis of Vorovich and Ustinov by introducing an elastic in-
denter. He corrected their asymptotic expansion by introducing
the ratio of the elastic properties into the solution.

While most researchers agree that the integral transform
method appears to be the best tool for analyzing contact prob-
lems, Chen [1] identified a major shortcoming of this method.
He found that integral formulations for contact problems in
layered media were slow to converge at the surface, near the
edge of the contact zone, especially for relatively thin layers.
To circumvent this problem Chen and Engel [2] introduced
a different approach, called the general approximate method
(GAM), for the axisymmetric mixed boundary value problems
in elasticity. The approach taken by Chen and Engel [2] was to
replace the exact boundary conditions by approximate boundary
conditions, such that the mixed conditions were reduced to the
boundary condition of the second kind, which was then solved
exactly. In their paper, Chen and Engel [2], compared their
results with those of Dhaliwal [3] for a flat-ended punch and
concluded that their approach was more accurate. Furthermore,
they were able to investigate layers of all thicknesses. Also in
their work the layer, substrate and indenter were assumed to be
elastic.

McCormick [10] developed a numerical method to compute
the pressure distribution and penetration depth in a generalized
elliptical contact between layered elastic solids based on a
discretized representation of the unknown pressure distribution.
The procedure was applied to the contact between an indenter
and layered half space and numerical solutions were presented
for various material combinations. McCormick also demon-
strated a favorable comparison of his numerical results with
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Fig. 2. Elastic contact of a sphere with a halfspace.

the Hertz solution (Fig. 2) for limiting cases as well as with the
numerical results of Chen and Engel [2]. These solutions were
presented graphically in dimensionless form for the values of
contact radius , penetration depth and contact
load over the range of and with .
The values for contact radius and penetration depth determined
by this method agreed within one percent of the Chen and
Engel [2] results.

Matthewson [9] investigated the bonded interface formed be-
tween a rigid sphere and a soft, thin, elastic layer. The elastic
modulus of the layer was assumed to be small compared with
the moduli of the indenter and the substrate. The thickness of
the layer was assumed to be small compared with the contact
radius, which was small, compared with the characteristic linear
dimension of the indenter. Friction between the indenter and the
layer was ignored. Using all of these assumptions, he obtained
differential equations which described the deformation of the
layer. He found solutions for indentation of the sphere (or pa-
raboloid) explicitly for general values of Poisson’s ratio of the
layer. Experiments were done using spherical and conical inden-
ters and the results of his analyses were in good agreement with
observed experimental results. He also compared his results to
the numerical results of McCormick [10] and found good agree-
ment only for .

Jaffar [6] developed a numerical method for solving axisym-
metric contact problems for elastic layers bonded to a rigid sub-
strate (bonded layer) or layers resting on a rigid substrate (un-
bounded layer), indented by a frictionless indenter. Rigid spher-
ical and circular flat-ended indenters were considered in the
range , for Poisson’s ratio in the range

. He assumed that both the pressure and surface dis-
placement over the contact region had an expansion in terms
of modified Legendre polynomials. The method was tested by
comparing the numerical results with the exact solution for the
Hertzian problem and very good agreement was ob-
tained. Further computations were performed for and
results were presented for pressure distributions, total load and
penetration depth within the contact region and surface displace-
ment outside the region. Results for when , were
compared with the numerical results of McCormick [10] and the
reported agreement was very good.

Stevanovic´ and Yovanovich [12] developed a procedure for
reducing the complex, computationally intensive solution of
Chen and Engel [2], to a simple closed-form solution for the
unknown contact radius. The method of Chen and Engel was
chosen because it assumed that the sphere, substrate and layer
were elastic and their model was also applicable over the full
range of the layer thicknesses ie., .

The numerical data obtained from Chen and Engel [2] were
presented graphically in dimensionless form for contact radius
versus layer thickness. Selecting the proper dimensionless pa-
rameters

for contact radius

for dimensionless layer thickness

the numerical results fall on a single curve, which is easily cor-
related. The resulting correlation equation requires a simple, nu-
merical root-finding method for computing the contact radius.
Further investigation of this problem has led to the development
of a closed-form solution for the unknown contact radius. The
solution is presented in following form:

where is defined as

and and are the contact radii corresponding to the layer
and substrate bounds, respectively. The

physical parameter is defined as the ratio of the bounding radii

It is important to notice that for any common combination of
metallic materials, the value of is in the range .
This model gives good agreement with the numerical values of
the Chen and Engel model . The maximum difference
between Chen and Engel and the present model is 1.5% for

. For values of the proposed model does not have
good agreement with the numerical data of Chen and Engel. To
find a radius of contact for cases where it is necessary
to develop a new model.

Table I provides a summary of the solution methods reviewed,
the range of applicability and the elastic properties of the sphere,
layer and substrate.

III. M ECHANICAL MODEL DEVELOPMENT

A mechanical model is developed for contact between a
metallic sphere and an elastomeric layer bonded to a metallic
substrate. The model can be used for layer-substrate material
combinations with any value of Poisson’s ratio where the
bounding radii ratio, and the Young’s modulus of elas-
ticity of the substrate is more than 40 times greater than that of
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TABLE I
REVIEW OF MECHANICAL MODELS

the layer. It is assumed that when and are much greater
than (40 times or more) the substrate and the sphere can be
modeled as a rigid material compared to the layer. Given this
assumption, the bonding radius corresponding to the substrate
bond is equal to zero and the ratio of bounding radii
becomes infinitely large. For the new model, the contact radius
will depend on a smaller subset of the physical parameters and
will not contain and . Therefore

Numerical data from the model of Chen and Engel are ob-
tained for several layer material combinations. Values of
vary between 0.05 MPa and 500 MPa. A MATLAB 5 computer
code [8] based on the model of Chen and Engel requires that the
value of and be set at some finite number. These values
of and were set to 207 GPa to correspond to the value
of stainless steel. During the computation all physical parame-
ters: load, radius of sphere, layer thickness are varied. Since the
model of Chen and Engel does not converge for very thin layers,
i.e., , computed values are obtained for the range of

. For very thick layers, the radius of the contact,
, must approach a value of . Calculated data from Chen and

Engel are presented graphically in dimensionless form in Fig. 3.
Selecting a dimensionless radius as and dimen-

sionless layer thickness as , all numerical results fall on
a single curve. This curve is correlated with a simple correlation
equation

(5)

where correlation coefficients are , and
.

The maximum difference between the correlation and the
Chen and Engel model is approximately 1.9% for the value of

with an RMS difference of 0.9.
The unknown radius of contact,, appears on both sides of the

correlation equation, which requires a simple numerical root-
finding method for computing the contact radius. An iterative
technique based on the Newton-Raphson method can be used

Fig. 3. Dimensionless contact radius versus� .

to obtain the root of the equation. The solution procedure is
described in the Appendix. An alternate approach for finding
the root is the use of a computer algebra system, such as Maple
[7].

IV. COMPARISON OFPRESENTMODEL TO OTHERS

The above proposed model is compared with that of
Matthewson [9] and Vorovich and Ustinov [13]. These models
can not be used for a wide range of. Matthewson [9] stated
that his model gives good agreement for while the
model of Vorovich and Ustinov [13] is good only for .
Since cannot go to zero because , the smallest value of

is chosen to be . Fig. 4 shows comparisons between
the proposed model and the other two models.

As can be seen from Fig. 4 the proposed model has good
agreement with the model of Matthewson [9] for thin layers,

. For the agreement is poor because his model
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Fig. 4. Comparison of present model with other models.

is not able to approach unity for largedue to the approxima-
tion made in his analysis. For the range of the maximum
error of the correlation with the data of Matthewson is approx-
imately 3.0% at . The proposed model is not compared
with the model of Jaffar [6] because he reported his numerical
results in graphical form.

The proposed model shows good agreement with the model
of Vorovich and Ustinov [13] for the thick layers, . For

the model is not in good agreement with the model
of Vorovich and Ustinov [13] which is expected because their
model is applicable only for thick layers.

V. COMPARISON OFEXPERIMENTAL DATA WITH

PROPOSEDMODEL

To verify the proposed model, contact radius measurements
obtained by the authors are compared to the model predic-
tions. The silicone rubber with the following properties from
Stevanovic´ [11], were used for the layer:

MPa

Tests were performed for two different layer thicknesses (7.0
mm and 43 mm), using two indenters ( mm and

mm) and for the load range – N. Experiments were
done using an Instron, which can be used to measure the pene-
tration depth of the spherical indenter. Knowing the penetra-
tion depth , the radius of the contact can be calculated using
the simple geometrical relationship:

(6)

Fig. 5 compares the present model and the experimental data
for a range of . The maximum error of the correlation with the
experimental data is 3.0%. These preliminary results verify the
accuracy of the model for intermediate layer thicknesses.

Fig. 5. Comparison of present model with experimental data.

VI. SUMMARY

An approximate model for computing the contact radius of
a sphere in contact with an elastic layer on a substrate is pre-
sented in the form of an equation which requires a simple root-
finding procedure for the unknown radius of contact. The model
is applicable for any layer-substrate material combination where

. The sphere and substrate are assumed to be rigid com-
pared to the layer. Due to this assumption the model cannot pre-
dict the contact radius where the layer thickness is equal to zero,
but the model can be used for the very thin relative layer thick-
ness, . For , the previously developed model
is recommended.

A comparison to other models shows good agreement for the
thin layers, Matthewson [9] and for the thick layers, Vorovich
and Ustinov [13].

Experiments with silicone rubber layers were used to verify
the accuracy of the proposed model in the ranges:
and . The experimental results are in a good agreement
with model predictions within 3%.

Future work is recommended to compare the proposed model
with other models in the intermediate layer thickness, to exper-
imentally verify the model for the thin layers and to obtain a
closed-form solution for the unknown contact radius.

APPENDIX

The results of the application of the Chen and Engel model
for the contact of a rigid sphere and an elastic layer bonded to a
rigid substrate are correlated by the

(7)

where
unknown contact radius;
contact radius corresponding to an infinitely thick
layer;
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layer thickness.
The correlation coefficients are , ,

.
The maximum contact radius is obtained from the Hertz re-

lation

(8)

where
Young’s modulus and Poisson’s ratio of the layer;
load;
radius of curvature of the sphere.

Since the unknown appears on both sides of the equation,
an iterative method must be used to calculate its root. The
Newton–Raphson method can be used to obtain the root which
is found from the following equation for :

(9)
Substituting the values for the correlation coefficients gives

the equation for , [see (10)], shown at the bottom of the
page.

This equation is valid for any combination of values for
and .

The first guess for the iterative procedure can be based on the
maximum contact radius . Fewer than six iterations are
required for convergence to eight digit accuracy.
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