Summary

The ideal Refrigeration cycle schematic and T-s diagram:

Common Assumptions:

- 1) Evaporator and Condenser are constant pressure devices $(P_4=P_1 \& P_3=P_2)$
- 2) Saturated vapour at the evaporator outlet (state 1)
- 3) Saturated liquid at the condenser outlet (state 3)
- 4) Steady operating conditions
- 5) $\Delta ke, \Delta pe = 0$
- 6) Adiabatic process in expansion valve $(h_3=h_4)$
- For Ideal Vapor Compression Refrigeration Cycle: Isentropic compression (s₂=s₁)

Analysis:

Compressor $\rightarrow w_{in} = h_2 - h_1$ **Condenser** $\rightarrow q_{Ht} = h_2 - h_3$ **Expansion Valve** $\rightarrow h_3 = h_4$ **Evaporator** $\rightarrow q_L = h_1 - h_4$

Coefficient of Performance (COP_R) :

$$COP_{R} = \frac{Benefit}{Cost} = \frac{q_{L}}{w_{in}} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}}$$

Compressor Isentropic Efficiency:

$$\eta_c = \frac{w_s}{w_a} = \frac{h_{2s} - h_1}{h_{2a} - h_1}$$

Question

A large refrigeration plant is to be maintained at -15° C, and it requires refrigeration at a rate of 100 kW. The condenser of the plant is to be cooled by liquid water, which experiences a temperature rise of 8°C as it flows over the coils of the condenser. The plant uses refrigerant-134a between the pressure limits of 120 kPa and 700 kPa. Assuming the compressor has an isentropic efficiency of 75%, determine:

- a) The mass flow rate of the refrigerant
- b) The power input to the compressor
- c) The mass flow rate of the cooling water
- d) The rate of exergy destruction associated with the compression process (assume $T_0=25^{\circ}C$)

