Tutorial \#3

First Law of Thermodynamics: Closed Systems

Problem 3-73 A $0.3-\mathrm{m}^{3}$ tank contains oxygen initially at 100 kPa and $27^{\circ} \mathrm{C}$. A paddle wheel within the tank is rotated until the pressure inside rise to 150 kPa . During the process 2 KJ of heat is lost to the surroundings. Determine the paddle-wheel work done. Neglect the energy stored in the paddle wheel.

Solution:

Step 1: Draw a schematic diagram to represent the system

Step 2: What to determine?
The work done by paddle-wheel work, W_{e}
Step 3: The information given in the problem statement.

- Volume of the tank, $V=0.3 \mathrm{~m}^{3}$, and Volume remains constant during the whole process: $V_{2}=V_{1}=V$.
- Initial condition of the Oxygen in the tank: $P_{1}=100 \mathrm{kPa}, T_{1}=27^{\circ} \mathrm{C}$;
- Final condition of the Oxygen in the tank: $P_{2}=150 \mathrm{kPa}$;
- Heat loss to the surroundings, $Q=-2 \mathrm{KJ}$.

Step 4: Table of all known values and properties

Oxygen	Pressure (kPa)	Volume $\left(\mathrm{m}^{3}\right)$	Temperature (K)	Heat loss (KJ)
Initial condition 1	100	0.3	300	-2
Final condition 2	150	0.3		

Step 5: Assumptions

- It's a closed system and no mass loss in the whole process;
- Consider the Oxygen as ideal gas for given conditions;
- Neglect the energy stored in the paddle wheel;
- Change in kinetic and potential energy is negligible.

Step 6: Solve

1. According the ideal gas equation,

$$
P V=m R T
$$

From the initial condition, the mass of the Oxygen is determined by

$$
m=\frac{P_{1} V_{1}}{R T_{1}}=\frac{(100 \mathrm{kPa}) \times\left(0.3 \mathrm{~m}^{3}\right)}{\left(0.2598 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(300 \mathrm{~K})}=0.3849(\mathrm{~kg})
$$

2. The final temperature of the Oxygen can be determined from

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

So,

$$
T_{2}=\frac{P_{2} V_{2}}{P_{1} V_{1}} T_{1}=\frac{(150 \mathrm{kPa}) \times\left(0.3 \mathrm{~m}^{3}\right)}{(100 \mathrm{kPa}) \times\left(0.3 \mathrm{~m}^{3}\right)} \times(300 \mathrm{~K})=450(\mathrm{~K})
$$

3. The energy conservation equation of this closed system can be described as:

$$
Q-W=\Delta U+\Delta K E+\Delta P E
$$

where, $\triangle K E$ and $\triangle P E$ are both zero according to the assumptions. As for the work,

$$
W=W_{e}+W_{b}+W_{\text {other }}
$$

Due to the volume remains constant, the boundary work is zero and there is no other works indicated in the problem. Thus the above energy conservation equation became,

$$
Q-W_{e}=\Delta U
$$

Because it's a constant-volume process, the above equation can be concluded,

$$
Q-W_{e}=m\left(u_{2}-u_{1}\right)=C_{v} m\left(T_{2}-T_{1}\right)
$$

Here, the specific heat of Oxygen at the average temperature of $T_{\text {avg }}=(300+450) / 2=375(K)$ is, $C_{v, \text { avg }}=0.6745 \mathrm{KJ} /(\mathrm{kg} \cdot \mathrm{K})($ from the Table A-2b).

So, rearrange the above equation and substitute the values,

$$
\begin{aligned}
W_{e} & =Q-C_{v} m\left(T_{2}-T_{1}\right) \\
& =(-2 K J)-(0.6745 \mathrm{KJ} / \mathrm{kg} \cdot \mathrm{~K}) \times(0.3849 \mathrm{~kg}) \times(450 \mathrm{~K}-300 \mathrm{~K}) \\
& =-40.94 \mathrm{KJ}
\end{aligned}
$$

Step 7: Conclusion statement

The work done by the paddle-wheel is $\mathbf{- 4 0 . 9 4 \mathrm { KJ }}$.

Problem 3-83 A piston-cylinder device contains 5 kg of argon at 400 kPa and $30^{\circ} \mathrm{C}$. During a quasi-equilibrium, isothermal expansion process, 15 KJ of boundary work is done by the system, and 3 KJ of paddle-wheel work is done on the system. Determine the heat transfer for this process.

Solution:

Step 1: Draw a schematic diagram to represent the problem

Initial
Condition

Final Condition

Step 2: What to determine?

The heat transfer between the system and the surroundings, Q

Step 3: The information given in the problem statement.

1. Argon in the cylinder: $\mathrm{m}=5 \mathrm{~kg}, \mathrm{P}=400 \mathrm{kPa}$ and $\mathrm{T}=30 \mathrm{~V}$;
2. A boundary work done by the system, $\mathrm{W}_{\mathrm{b}}=15 \mathrm{KJ}$;
3. The paddle-wheel work done on the system, $\mathrm{W}_{\mathrm{e}}=-3 \mathrm{KJ}$

Step 4: Assumptions

1. It's a quasi-equilibrium, isothermal expansion process, which means that the temperature remains constant in the whole process;
2. For the argon in the piston-cylinder system, it's a closed system, no mass enters or leaves.
3. Change in kinetic and potential energy is negligible.

Step 6: Solve

We take the argon in the piston-cylinder system as our system, and the energy conservation equation of this closed system can be described as:

$$
Q-W=\Delta U+\Delta K E+\Delta P E
$$

where, $\triangle K E$ and $\triangle P E$ are both zero according to the assumptions. It's a quasiequilibrium, isothermal expansion process. The temperature remains constant, so is the total internal energy. The change of the total internal energy is zero during the whole process, which give us

$$
\Delta U=0
$$

So,

$$
Q-W=0
$$

Substituting the works,

$$
Q=W=W_{e}+W_{b}=(-3 K J)+(15 K J)=12 K J
$$

The sign is positive, which means that heat transfers from the surroundings to the system.

Step 7: Conclusion statement

In this process, the argon in the piston-cylinder device will absorb heat with an amount of $\underline{\mathbf{1 2 K J}}$ from the surroundings.

