Chapter 5: The First Law of Thermodynamics: Closed Systems

The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings.
A closed system can exchange energy with its surroundings through heat and work transfer. In other words, work and heat are the forms that energy can be transferred across the system boundary.
Based on kinetic theory, heat is defined as the energy associated with the random motions of atoms and molecules.

Heat Transfer

Heat is defined as the form of energy that is transferred between two systems by virtue of a temperature difference.

Note: there cannot be any heat transfer between two systems that are at the same temperature.
Note: It is the thermal (internal) energy that can be stored in a system. Heat is a form of energy in transition and as a result can only be identified at the system boundary.
Heat has energy units kJ (or BTU). Rate of heat transfer is the amount of heat transferred per unit time.

Heat is a directional (or vector) quantity; thus, it has magnitude, direction and point of action.

Notation:

- Q (kJ) amount of heat transfer
$-Q^{\circ}(k W)$ rate of heat transfer (power)
$-q(k J / k g)$ - heat transfer per unit mass
$-q^{\circ}(k W / k g)$ - power per unit mass
Sign convention: Heat Transfer to a system is positive, and heat transfer from a system is negative. It means any heat transfer that increases the energy of a system is positive, and heat transfer that decreases the energy of a system is negative.

Fig. 5-1: Sign convention: positive if to the system, negative if from the system.

Modes of Heat Transfer

Heat can be transferred in three different modes conduction, convection, and radiation. All modes of heat transfer require the existence of a temperature difference.
Conduction: is the transfer of energy from the more energetic particles to the adjacent less energetic particles as a result of interactions between particles.
In solids, conduction is due to the combination of vibrations of the molecules in a lattice and the energy transport by free electrons. Conduction will be discussed in more details in Ch 10 \& 11 .
Convection: is the mode of energy transfer between a solid surface and the adjacent liquid or gas which is in motion, and it involves the combined effects of conduction and fluid motion (advection).
Convection is called forced if the fluid is forced to flow by external means such as a fan or a pump. It is called free or natural if the fluid motion is caused by buoyancy forces that are induced by density differences due to the temperature variation in a fluid. Convection will be discussed in more details in Ch 12, 13 \& 14.
Radiation: is the energy emitted by matter in the form of electromagnetic waves (or photons) as a result of the changes in the electronic configurations of the atoms or molecules. Radiation will be discussed in more details in Ch 15.

Work

Work is the energy interaction between a system and its surroundings. More specifically, work is the energy transfer associated with force acting through a distance.

Notation:

- $W(k J)$ amount of work transfer
- $W^{\circ}(k W)$ power
- w (kJ/kg) - work per unit mass
$-w^{\circ}(k W / k g)$ - power per unit mass
Sign convention: work done by a system is positive, and the work done on a system is negative.

Fig. 5-2: Sign convention for heat and work.
Similarities between work and heat transfer:
$>$ Both are recognized at the boundaries of the system as they cross them (boundary phenomena).
$>$ Systems posses energy, but not heat or work (transfer phenomena).
$>$ Both are associated with a process, not a state. Heat or work has no meaning at a state.
> Both are path functions, their magnitudes depend on the path followed during a process as well as the end states.
Path functions: have inexact differentials designated by symbol δ. Properties, on the other hand, are point functions which depend on the state only (not on how a system reaches that state), and they have exact differentials.

$$
\begin{aligned}
& \int_{1}^{2} d V=V_{2}-V_{1}=\Delta V \quad \text { (Point function) } \\
& \int_{1}^{2} \delta \mathrm{~W}=W_{12} \quad \text { (Path function, not } \Delta \mathrm{W} \text { nor } \mathrm{W}_{2}-\mathrm{W}_{1} \text {) }
\end{aligned}
$$

Electrical Work

The work that is done on a system by electrons. When N coulombs of electrons move through a potential difference V , the electrical work done is:
$W_{e}=V N \quad(k J)$
Which can be explained in the rate form as
$\mathrm{W}_{\mathrm{e}}{ }^{\bullet}=V I$

Example 5-1: Electrical work

A well-insulated electrical oven is being heated through its heating element. Determine whether it is work or heat interaction. Consider two systems: a) the entire oven (including the heater), and b) only the air in the oven (without the heater) see Fig 5-3.

Solution:

The energy content of the oven is increased during this process.
a) The energy transfer to the oven is not caused by a temperature difference between the oven and air. Instead, it is caused by electrical energy crossing the system boundary and thus: this is a work transfer process.
b) This time, the system boundary includes the outer surface of the heater and will not cut through it. Therefore, no electrons will be crossing the system boundary. Instead, the energy transfer is a result of a temperature difference between the electrical heater and air, thus: this is a he at transfer process.

Fig. 5-3: Schematic for example 5-1.

Mechanical work

There are several ways of doing work, each in some way related to a force acting through a distance.

$$
\begin{equation*}
W=F . s \tag{kJ}
\end{equation*}
$$

If the force is not constant, we need to integrate:

$$
\begin{equation*}
W=\int_{1}^{2} F . d s \tag{kJ}
\end{equation*}
$$

There are two requirements for a work interaction:
> there must be a force acting on the boundary
$>$ the boundary must move
Therefore, the displacement of the boundary without any force to oppose or drive this motion (such as expansion of a gas into evacuated space) is not a work interaction, $\mathrm{W}=0$.
Also, if there are no displacements of the boundary, even if an acting force exists, there will be no work transfer $\mathrm{W}=0$ (such as increasing gas pressure in a rigid tank).

Moving Boundary Work

The expansion and compression work is often called moving boundary work, or simply boundary work.
We analyze the moving boundary work for a quasi-equilibrium process, see Chapter 3. Consider the gas enclosed in a piston-cylinder at initial P and V. If the piston is allowed to move a distance ds in a quasi-equilibrium manner, the differential work is:

$$
\delta W_{b}=F . d s=P A d s=P d V
$$

The quasi-equilibrium expansion process is shown in Fig. 5-4. On this diagram, the differential area $d A$ under the process curve in $P-V$ diagram is equal to $P d V$, which is the differential work.
Note: a gas can follow several different paths from state 1 to 2 , and each path will have a different area underneath it (work is path dependent).
The net work or cycle work is shown in Fig. 5-5. In a cycle, the net change for any properties (point functions or exact differentials) is zero. However, the net work and heat transfer depend on the cycle path.

$$
\Delta \mathrm{U}=\Delta \mathrm{P}=\Delta \mathrm{T}=\Delta \text { (any property) }=0
$$

Fig. 5-4: the area under P-V diagram represents the boundary work.

Fig. 5-5: network done during a cycle.

Polytropic Process

During expansion and compression processes of real gases, pressure and volume are often related by $P V^{n}=C$, where n and C are constants. the moving work for a polytropic process can be found:

$$
W_{\text {polytopic }}=\int_{1}^{2} P d V=\int_{1}^{2} C V^{-n} d V=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}
$$

Since $P_{1} V_{1}^{n}=P_{2} V_{2}^{n}=C$. For an ideal gas $(P V=m R T)$ it becomes:

$$
\begin{equation*}
W_{\text {polytropic }}=\frac{m R\left(T_{2}-T_{1}\right)}{1-n}, \quad n \neq 1 \tag{kJ}
\end{equation*}
$$

The special case $n=1$ is the isothermal expansion $P_{1} V_{1}=P_{2} V_{2}=m R T_{0}=C$, which can be found from:

$$
\begin{equation*}
W_{b, \text { isothermal }}=\int_{1}^{2} P d V=\int_{1}^{2} \frac{C}{V} d V=P_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right), \quad n=1 \tag{kJ}
\end{equation*}
$$

Since for an ideal gas, $\mathrm{PV}=\mathrm{mR} \mathrm{T}_{0}$ at constant temperature T_{0}, or $\mathrm{P}=\mathrm{C} / \mathrm{V}$.

Example 5-2: Polytropic work

A gas in piston-cylinder assembly undergoes a polytropic expansion. The initial pressure is 3 bar, the initial volume is $0.1 \mathrm{~m}^{3}$, and the final volume is $0.2 \mathrm{~m}^{3}$. Determine the work for the process, in $k J$, if a) $n=1.5, b) n=1.0$, and c) $n=0$.

Solution:
Assume that i) the gas is a closed system, ii) the moving boundary is only work mode, and iii) the expansion is polytropic.
a) $n=1.5$

$$
W=\int_{V 1}^{V 2} P d V=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}
$$

We need P_{2} that can be found from $P_{1} V_{1}^{n}=P_{2} V_{2}^{n}$:

$$
\begin{gathered}
P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{n}=(3 b a r)\left(\frac{0.1}{0.2}\right)^{1.5}=1.06 \mathrm{bar} \\
W=\left(\frac{(1.06 \mathrm{bar})\left(0.2 \mathrm{~m}^{3}\right)-(3)(0.1)}{1-1.5}\right)\left(\frac{10^{5} \mathrm{~N} / \mathrm{m}^{2}}{1 \mathrm{bar}}\right)\left(\frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~N} . \mathrm{m}}\right)=17.6 \mathrm{~kJ}
\end{gathered}
$$

b) $\mathrm{n}=1$, the pressure volume relationship is $\mathrm{PV}=$ constant. The work is:

$$
\begin{aligned}
& W=\int_{1}^{2} P d V=P_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& W=(3 b a r)\left(0.1 \mathrm{~m}^{3}\right)\left[\frac{10^{5} \mathrm{~N} / \mathrm{m}^{2}}{1 \mathrm{bar}}\right]\left(\frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~N} . \mathrm{m}}\right) \ln \left(\frac{0.2}{0.1}\right)=20.79 \mathrm{~kJ}
\end{aligned}
$$

c) For $\mathrm{n}=0$, the pressure-volume relation reduces to $\mathrm{P}=$ constant (isobaric process) and the integral become $\mathrm{W}=\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$.

Substituting values and converting units as above, $\mathrm{W}=30 \mathrm{~kJ}$.

Spring work

For linear elastic springs, the displacement x is proportional to the force applied:

$$
F=k_{s} X
$$

where k_{s} is the spring constant and has the unit $k N / m$. The displacement x is measured from the undisturbed position of the spring. The spring work is:

$$
\begin{equation*}
W_{\text {spring }}=\frac{1}{2} k_{s}\left(x_{2}^{2}-x_{1}^{2}\right) \tag{kJ}
\end{equation*}
$$

Note: the work done on a spring equals the energy stored in the spring.

Non-mechanical forms of work

Non-mechanical forms of work can be treated in a similar manner to mechanical work. Specify a generalized force F acting in the direction of a generalized displacement x, the work transfer associated with the displacement $d x$ is:

$$
\delta W=F . d x
$$

Example 5-3: Mechanical work

Calculate the work transfer in the following process:

Fig. 5-6: Schematic P-V diagram for Example 3-3.
Solution:
Process $1-2$ is an expansion $\left(V_{2}>V_{1}\right)$ and the system is doing work ($\mathrm{W}_{12}>0$), thus:

$$
\begin{aligned}
W_{12} & =P_{1}\left(V_{2}-V_{1}\right)+\left[0.5\left(P_{1}+P_{2}\right)-P_{1}\right]\left(V_{2}-V_{1}\right) \\
& =\left(V_{2}-V_{1}\right)\left(P_{1}+P_{2}\right) / 2
\end{aligned}
$$

Process 2-3 is an isometric process (constant volume $\mathrm{V}_{3}=\mathrm{V}_{2}$), so $\mathrm{W}_{23}=0$
Process 3-1 is a compression $\left(\mathrm{V}_{3}>\mathrm{V}_{1}\right)$, work is done on the system, $\left(\mathrm{W}_{31}<0\right)$
$W_{31}=-P_{1}\left(V_{2}-V_{1}\right)$
$W_{\text {cycle }}=W_{\text {net }}=W_{12}+W_{23}+W_{31}=\left(V_{2}-V_{1}\right)\left(P_{2}-P_{1}\right) / 2$
Note that in a cycle $\Delta \mathrm{U}=\Delta \mathrm{P}=\Delta \mathrm{T}=\Delta$ (any property) $=0$

First Law of Thermodynamics

First law, or the conservation of energy principle, states that energy can be neither created nor destroyed; it can only change forms.
The first law cannot be proved mathematically, it is based on experimental observations, i.e., there are no process in the nature that violates the first law.
The first law for a closed system or a fixed mass may be expressed as:
net energy transfer to (or from) $=$ net increase (or decrease) in the the system as heat and work total energy of the system

$$
Q-W=\Delta E \quad(k J)
$$

where
$Q=$ net heat transfer $\left(=\Sigma Q_{\text {in }}-\Sigma Q_{\text {out }}\right)$
$W=$ net work done in all forms $\left(=\Sigma W_{\text {in }}-\Sigma W_{\text {out }}\right)$
$\Delta E=$ net change in total energy $\left(=E_{2}-E_{1}\right)$
The change in total energy of a system during a process can be expressed as the sum of the changes in its internal, kinetic, and potential energies:

$$
\begin{gather*}
\Delta E=\Delta U+\Delta K E+\Delta P E \tag{kJ}\\
\Delta U=m\left(u_{2}-u_{1}\right) \\
\Delta K E=\frac{1}{2} m\left(V_{2}^{2}-V_{1}^{2}\right) \\
\Delta P E=m g\left(z_{2}-z_{1}\right)
\end{gather*}
$$

Note: for stationary systems $\triangle P E=\triangle K E=0$, the first law reduces to

$$
Q-W=\Delta U
$$

The first law can be written on a unit-mass basis:

$$
q-w=\Delta e \quad(k J / k g)
$$

or in differential form:

$$
\begin{gather*}
\delta Q-\delta W=d U \\
\delta q-\delta W=d u \tag{kJ/kg}
\end{gather*}
$$

or in the rate form:

$$
Q^{\circ}-W^{\circ}=d E / d t \quad(k W)
$$

For a cyclic process, the initial and final states are identical, thus $\Delta \mathrm{E}=0$. The first law becomes:

$$
Q-W=0
$$

Note: from the first law point of view, there is no difference between heat transfer and work, they are both energy interactions. But from the second law point of view, heat and work are very different.

Example 5-4: Fist law

Air is contained in a vertical piston-cylinder assembly fitted with an electrical resistor. The atmospheric pressure is 100 kPa and piston has a mass of 50 kg and a face area of $0.1 \mathrm{~m}^{2}$. Electric current passes through the resistor, and the volume of air slowly increases by $0.045 \mathrm{~m}^{3}$. The mass of the air is 0.3 kg and its specific energy increases by $42.2 \mathrm{~kJ} / \mathrm{kg}$. Assume the assembly (including the piston) is insulated and neglect the friction between the cylinder and piston, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Determine the heat transfer from the resistor to air for a system consisting a) the air alone, b) the air and the piston.

Fig. 5-7: Schematic for problem 5-4.
Assumptions:
$>$ two closed systems are under consideration, as shown in schematic.
$>$ the only heat transfer is from the resistor to the air. $\triangle \mathrm{KE}=\triangle \mathrm{PE}=0$ (for air)
$>$ the internal energy is of the piston is not affected by the heat transfer.
a) taking the air as the system,

$$
\begin{gathered}
(\Delta \mathrm{KE}+\Delta \mathrm{PE}+\Delta \mathrm{U})_{\mathrm{air}}=\mathrm{Q}-\mathrm{W} \\
\mathrm{Q}=\mathrm{W}+\Delta \mathrm{U}_{\mathrm{air}}
\end{gathered}
$$

For this system work is done at the bottom of the piston. The work done by the system is (at constant pressure):

$$
W=\int_{V 1}^{V 2} P d V=P\left(V_{2}-V_{1}\right)
$$

The pressure acting on the air can be found from:

$$
\begin{aligned}
& \quad \mathrm{PA}_{\text {piston }}=\mathrm{m}_{\text {piston }} \mathrm{g}+\mathrm{P}_{\mathrm{atm}} \mathrm{~A}_{\text {piston }} \\
& P=\frac{m_{\text {piston }} g}{A_{\text {piston }}}+P_{\text {atm }} \\
& P=\frac{(50 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{\left(0.1 \mathrm{~m}^{2}\right)}\left(\frac{1 \mathrm{~Pa}}{1 \mathrm{~N} / \mathrm{m}^{2}}\right)\left(\frac{1 \mathrm{kPa}}{1000 \mathrm{~Pa}}\right)+100 \mathrm{kPa}=104.91 \mathrm{kPa}
\end{aligned}
$$

Thus, the work is

$$
W=(104.91 \mathrm{kPa})\left(0.045 \mathrm{~m}^{3}\right)=4.721 \mathrm{~kJ}
$$

With $\Delta U_{\text {air }}=m_{\text {air }} \Delta u_{\text {air }}$, the heat transfer is

$$
\mathrm{Q}=\mathrm{W}+\mathrm{m}_{\text {air }} \Delta \mathrm{u}_{\text {air }}=4.721 \mathrm{~kJ}+(0.3 \mathrm{~kg})(42.2 \mathrm{~kJ} / \mathrm{kg})=17.38 \mathrm{~kJ}
$$

b) system consisting the air and the piston. The first law becomes:

$$
(\Delta \mathrm{KE}+\Delta \mathrm{PE}+\Delta \mathrm{U})_{\mathrm{air}}+(\Delta \mathrm{KE}+\Delta \mathrm{PE}+\Delta \mathrm{U})_{\text {piston }}=\mathrm{Q}-\mathrm{W}
$$

where $(\Delta \mathrm{KE}=\Delta \mathrm{PE})_{\text {air }}=0$ and $(\Delta \mathrm{KE}=\Delta \mathrm{U})_{\text {piston }}=0$. Thus, it simplifies to:

$$
(\Delta \mathrm{U})_{\mathrm{air}}+(\Delta \mathrm{PE})_{\text {piston }}=\mathrm{Q}-\mathrm{W}
$$

For this system, work is done at the top of the piston and pressure is the atmospheric pressure. The work becomes

$$
\mathrm{W}=\mathrm{P}_{\mathrm{atm}} \Delta \mathrm{~V}=(100 \mathrm{kPa})\left(0.045 \mathrm{~m}^{3}\right)=4.5 \mathrm{~kJ}
$$

The elevation change required to evaluate the potential energy change of the piston can be found from the volume change:

$$
\begin{gathered}
\Delta \mathrm{z}=\Delta \mathrm{V} / \mathrm{A}_{\text {piston }}=0.045 \mathrm{~m}^{3} / 0.1 \mathrm{~m}^{2}=0.45 \mathrm{~m} \\
(\Delta \mathrm{PE})_{\text {piston }}=\mathrm{m}_{\text {piston }} \mathrm{g} \Delta \mathrm{z}=(50 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.45 \mathrm{~m})=220.73 \mathrm{~J}=0.221 \mathrm{~kJ} \\
\mathrm{Q}=\mathrm{W}+(\Delta \mathrm{PE})_{\text {piston }}+\mathrm{m}_{\text {air }} \Delta \mathrm{u}_{\text {air }} \\
\mathrm{Q}=4.5 \mathrm{~kJ}+0.221 \mathrm{~kJ}+(0.3 \mathrm{~kg})(42.2 \mathrm{~kJ} / \mathrm{kg})=17.38 \mathrm{~kJ}
\end{gathered}
$$

Note that the heat transfer is identical in both systems.

Specific Heats

The specific heat is defined as the energy required to raise the temperature of a unit mass of a substance by one degree. There are two kinds of specific heats:
$>$ specific heat at constant volume, Cv (the energy required when the volume is maintained constant)
$>$ specific heat at constant pressure, $C p$ (the energy required when the pressure is maintained constant)
The specific heat at constant pressure Cp is always higher than Cv because at constant pressure the system is allowed to expand and energy for this expansion must also be supplied to the system.
Let's consider a stationary closed system undergoing a constant-volume process $\left(w_{b}=0\right)$. Applying the first law in the differential form:

$$
\delta q-\delta w=d u
$$

at constant volume (no work) and by using the definition of C_{v}, one can write:

$$
\begin{aligned}
& C_{v} d T=d u \\
& \text { or } \\
& C_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}
\end{aligned}
$$

Similarly, an expression for the specific heat at constant pressure $C p$ can be found. From the first law, for a constant pressure process ($w_{b}+\Delta u=\Delta h$). It yields:

$$
C_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}
$$

$>$ specific heats (both C_{v} and C_{p}) are properties and therefore independent of the type of processes.
$>C_{v}$ is related to the changes in internal energy u, and C_{p} to the changes in enthalpy, h.
It would be more appropriate to define: C_{v} is the change in specific internal energy per unit change in temperature at constant volume. C_{p} is the change in specific enthalpy per unit change in temperature at constant pressure.

Specific heats for ideal gases

It has been shown mathematically and experimentally that the internal energy is a function of temperature only.

$$
u=u(T)
$$

Using the definition of enthalpy ($h=u+P v$) and the ideal gas equation of state ($\mathrm{P} v$ $=R T$), we have:

$$
h=u+R T
$$

Since R is a constant and u is a function of T only:

$$
h=h(T)
$$

Therefore, at a given temperature, u, h, C_{v} and C_{p} of an ideal gas will have fixed values regardless of the specific volume or pressure. For an ideal gas, we have:

$$
\begin{aligned}
d u & =C_{v}(T) d T \\
d h & =C_{p}(T) d T
\end{aligned}
$$

The changes in internal energy or enthalpy for an ideal gas during a process are determined by integrating:

$$
\begin{aligned}
& \Delta u=u_{2}-u_{1}=\int_{1}^{2} C_{v}(T) d T \quad(k J / k g) \\
& \Delta h=h_{2}-h_{1}=\int_{1}^{2} C_{p}(T) d T \quad(k J / k g)
\end{aligned}
$$

As low pressures, all real gases approach ideal-gas behavior, and therefore their specific heats depend on temperature only. The specific heats of real gases at low pressures are called ideal-gas specific heats (or zero-pressure specific heats) and are often denoted by $C_{p 0}$ and $C_{v 0}$. To carry out the above integrations, we need to know $\mathrm{C}_{\mathrm{v}}(\mathrm{T})$ and $\mathrm{C}_{\mathrm{p}}(\mathrm{T})$. These are available from a variety of sources:
$>$ Table A-2a: for various materials at a fixed temperature of $\mathrm{T}=300 \mathrm{~K}$
$>$ Table A-2b: various gases over a range of temperatures $250 \leq \mathrm{T} \leq 1000 \mathrm{~K}$
$>$ Table A-2c: various common gases in the form of a third order polynomial For an ideal gas, we can write:

$$
\begin{aligned}
& R T=h(T)-u(T) \\
& R=\frac{d h}{d T}-\frac{d u}{d T} \\
& R=C_{p}-C_{v}
\end{aligned}
$$

The ratio of specific heats is called the specific heat ratio $k=C_{p} / C_{v}$:
varies with temperature, but this variation is very mild.
$>$ for monatomic gases, its value is essentially constant at 1.67.
$>$ Many diatomic gases, including air, have a specific heat ratio of about 1.4 at room temperature.

Specific heats for solids and liquids

A substance whose specific volume (or density) is constant is called incompressible substance. The specific volumes of solids and liquids (which can be assumed as incompressible substances) essentially remain constant during a process.
The constant volume assumption means that the volume work (boundary work) is negligible compared with other forms of energy. As a result, it can be shown that the constant-volume and constant-pressure specific heats are identical for incompressible substances:

$$
C_{p}=C_{v}=C
$$

Specific heats of incompressible substances are only a function of temperature,

$$
C=C(T)
$$

The change of internal energy between state 1 and 2 can be obtained by integration:

$$
\Delta u=u_{2}-u_{1}=\int_{1}^{2} C(T) d T \quad(k J / k g)
$$

For small temperature intervals, a C at averaged temperature can be used and treated as a constant, yielding:

$$
\Delta u \approx C_{\text {ave }}\left(T_{2}-T_{1}\right)
$$

The enthalpy change of incompressible substance can be determined from the definition of enthalpy ($h=u+P v$)

$$
\begin{gathered}
h_{2}-h_{1}=\left(u_{2}-u_{1}\right)+v\left(P_{2}-P_{1}\right) \\
\Delta h=\Delta u+v \Delta P \quad(k J / k g)
\end{gathered}
$$

The term $v \Delta P$ is often small and can be neglected, so $\Delta h=\Delta u$.

Example 5-5: Specific heat and first law

Two tanks are connected by a valve. One tank contains 2 kg of CO_{2} at $77^{\circ} \mathrm{C}$ and 0.7 bar. The other tank has 8 kg of the same gas at $27^{\circ} \mathrm{C}$ and 1.2 bar . The valve is opened and gases are allowed to mix while receiving energy by heat transfer from the surroundings. The final equilibrium temperature is $42^{\circ} \mathrm{C}$. Using ideal gas model, determine a) the final equilibrium pressure b) the heat transfer for the process.
Assumptions:
$>$ the total amount of CO_{2} remains constant (closed system).
$>$ ideal gas with constant Cv.
> The initial and final states in the tanks are equilibrium. No work transfer.

The final pressure can be found from ideal gas equation of state:

$$
P_{f}=\frac{m_{t} R T_{f}}{V_{1}+V_{2}}=\frac{\left(m_{1}+m_{2}\right) R T_{f}}{V_{1}+V_{2}}
$$

For tank 1 and 2, we can write: $V_{1}=m_{1} R T_{1} / P_{1}$ and $V_{2}=m_{2} R T_{2} / P_{2}$. Thus, the final pressure, Pf becomes:

$$
\begin{aligned}
P_{f} & =\frac{\left(m_{1}+m_{2}\right) R T_{f}}{\left(\frac{m_{1} R T_{1}}{P_{1}}\right)\left(\frac{m_{2} R T_{2}}{P_{2}}\right)}=\frac{\left(m_{1}+m_{2}\right) T_{f}}{\left(\frac{m_{1} T_{1}}{P_{1}}\right)\left(\frac{m_{2} T_{2}}{P_{2}}\right)} \\
P_{f} & =\frac{(10 \mathrm{~kg})(315 \mathrm{~K})}{\frac{(2 \mathrm{~kg})(350 \mathrm{~K})}{0.7 \mathrm{bar}}+\frac{(8 \mathrm{~kg})(300 \mathrm{~K})}{1.2 \mathrm{bar}}}=1.05 \mathrm{bar}
\end{aligned}
$$

b) the heat transfer can be found from an energy balance:

$$
\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}
$$

With $\mathrm{W}=0$,

$$
Q=U_{f}-U_{i}
$$

where initial internal energy is: $U_{i}=m_{1} u\left(T_{1}\right)+m_{2} u\left(T_{2}\right)$
The final internal energy is: $U_{f}=\left(m_{1}+m_{2}\right) u\left(T_{f}\right)$
The energy balance becomes:

$$
Q=m_{1}\left[u\left(T_{f}\right)-u\left(T_{1}\right)\right]+m_{2}\left[u\left(T_{f}\right)-u\left(T_{2}\right)\right]
$$

Since the specific heat C_{v} is constant

$$
\begin{gathered}
\mathrm{Q}=\mathrm{m}_{1} \mathrm{C}_{\mathrm{v}}\left[\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{1}\right]+\mathrm{m}_{2} \mathrm{C}_{\mathrm{v}}\left[\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{2}\right] \\
Q=(2 \mathrm{~kg})\left(0.745 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)(315 \mathrm{~K}-350 \mathrm{~K})+(8 \mathrm{~kg})\left(0.745 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)(315 \mathrm{~K}-300 \mathrm{~K})=37.25 \mathrm{~kJ}
\end{gathered}
$$

The plus sign indicates that the heat transfer is into the system.

Chapter 6: The First Law: Control Volumes

The first law is discussed for closed systems in Chapter 5. In this Chapter, we extend the conservation of energy to systems that involve mass flow across their boundaries, control volumes.

Any arbitrary region in space can be selected as control volume. There are no concrete rules for the selection of control volumes. The boundary of control volume is called a control surface.

Conservation of Mass

Like energy, mass is a conserved property, and it cannot be created or destroyed. Mass and energy can be converted to each other according to Einstein's formula: $E=m c^{2}$, where c is the speed of light. However, except for nuclear reactions, the conservation of mass principle holds for all processes.
For a control volume undergoing a process, the conservation of mass can be stated as:

Fig. 6-1: Conservation of mass principle for a CV.
The conservation of mass can also be expressed in the rate form:

$$
\sum m^{\bullet}{ }_{i}-\sum m^{\bullet}{ }_{e}=d m_{C V} / d t
$$

The amount of mass flowing through a cross section per unit time is called the mass flow rate and is denoted by m°. The mass flow rate through a differential area dA is:

$$
d m^{\circ}=\rho V_{n} d A
$$

where V is the velocity component normal to $d A$. Thus, the mass flow rate for the entire cross-section is obtained by:

$$
m^{\bullet}=\int_{A} \rho V_{n} d A \quad(\mathrm{~kg} / \mathrm{s})
$$

Assuming one-dimensional flow, a uniform (averaged or bulk) velocity can be defined:

$$
m^{\circ}=\rho \vee A \quad(\mathrm{~kg} / \mathrm{s})
$$

where $\mathrm{V}(\mathrm{m} / \mathrm{s})$ is the fluid velocity normal to the cross sectional area. The volume of the fluid flowing through a cross-section per unit time is called the volumetric flow, V° :

$$
V^{\bullet}=\int_{A} V_{n} d A=V A \quad\left(\mathrm{~m}^{3} / \mathrm{s}\right)
$$

The mass and volume flow rate are related by: $m^{\circ}=\rho V^{\circ}=V^{\circ} / v$.

Conservation of Energy

For control volumes, an additional mechanism can change the energy of a system: mass flow in and out of the control volume. Therefore, the conservation of energy for a control volume undergoing a process can be expressed as

total energy crossing				
boundary as heat				
and work	+	total energy of		
mass entering			\quad	total energy
:---:				
of mass	$\quad=$	net change		
:---:				
in energy of				

$$
Q-W+\sum E_{\text {in,mass }}+\sum E_{\text {out }, \text { mass }}=\Delta E_{C V}
$$

This equation is applicable to any control volume undergoing any process. This equation can also be expressed in rate form:

$$
Q^{\bullet}-W^{\bullet}+\sum d E_{\text {in,mass }} / d t+\sum d E_{\text {out,mass }} / d t=d E_{C V} / d t
$$

Fig. 6-2: Energy content of CV can be changed by mass flow in/out and heat and work interactions.

Work flow: is the energy that required to push fluid into or out of a control volume. Consider an imaginary piston (that push the fluid to CV) where the fluid pressure is P and the cross sectional area is A. The force acting on the piston is $F=P A$.

Fig. 6-3: schematic for flow work.
The work done in pushing the fluid is:

$$
\begin{equation*}
W_{\text {flow }}=F . s=P A . s=P V \tag{kJ}
\end{equation*}
$$

or in a unit basis,

$$
w_{\text {flow }}=W_{\text {flow }} / m=P v \quad(\mathrm{~kJ} / \mathrm{kg})
$$

Note that the flow work is expressed in terms of properties.
The flow work can also be written as a rate equation.
The fluid entering or leaving a control volume possesses an additional form of energy (flow energy $P v$). Therefore, the total energy of a flowing fluid on a unitmass basis (denoted by θ) becomes:

$$
\theta=P v+e=P v+(u+k e+p e) \quad(k J / k g)
$$

Recall that enthalpy is defined as: $h=u+P v$. Therefore, the above equation becomes:

$$
\theta=h+k e+p e=h+V^{2} / 2+g z \quad(\mathrm{~kJ} / \mathrm{kg})
$$

The property θ is called methalpy. By using enthalpy instead of internal energy, the energy associated with flow work into/out of control volume is automatically taken care of. This is the main reason that enthalpy is defined!

Steady-State Flow Process

A process during which a fluid flows through a control volume steadily is called steady-state process. A large number of devices such as turbines, compressors, and nozzles operates under the same conditions for a long time and can be modeled (classified) as steady-flow devices.

The term steady implies no change with time. The term uniform implies no change with location over a specified region.
A steady flow is characterized by the following:
1- No properties within the CV change with time. Thus, volume, mass, and energy of CV remains constant. As a result, the boundary work is zero. Also, total mass entering the CV must be equal to total mass leaving CV.

2- No properties change at the boundary of the CV with time. It means that the mass flow rate and the properties of the fluid at an opening must remain constant during a steady flow.
3- The heat and mass interactions between the CV and its surroundings do not change with time.
Using the above observation, the conservation of energy principle for a general steady-flow system with multiple inlets and exits can be written as:

$$
\begin{aligned}
Q^{\bullet}-W^{\bullet} & =\sum m_{e}^{\bullet}\left(h_{e}+\frac{V_{e}^{2}}{2}+g z_{e}\right)-\sum m_{i}^{\bullet}\left(h_{i}+\frac{V_{i}^{2}}{2}+g z_{i}\right) \\
Q^{\bullet}-W^{\bullet} & =\sum m_{e}^{\bullet} \theta_{e}-\sum m_{i}^{\bullet} \theta_{i}
\end{aligned}
$$

Nozzles and Diffusers

A nozzle is a device that increases the velocity of a fluid at the expense of pressure. A diffuser is a device that increases the pressure of a fluid by slowing it down.

The cross sectional area of a nozzle decreases in the flow direction for subsonic flows and increase for supersonic flows.

Fig. 6-4: Schematic of nozzle
For a nozzle, common assumptions and idealizations are:
$Q^{\circ}=0$, no time for heat transfer, due to high velocity
$\mathrm{W}^{\circ}=0$, nozzles include no shaft or electric resistance wires
$\Delta P E=0$, no change in fluid elevation.
Mass equation for nozzles becomes:

$$
\mathrm{m}^{\circ}{ }_{1}=\mathrm{m}_{2}^{\circ} \quad \text { or } \quad \rho_{1} \mathrm{~A}_{1} \mathrm{~V}_{1}=\rho_{2} \mathrm{~A}_{2} \mathrm{~V}_{2}
$$

Energy balance:

$$
\begin{gathered}
Q^{\circ}-W^{\circ}=m_{1}^{\circ} \theta_{1}-m_{2}^{\circ} \theta_{2} \\
\left(h+V^{2} / 2\right)_{\text {at inlet }}=\left(h+V^{2} / 2\right)_{\text {at exit }}
\end{gathered}
$$

Diffusers are exactly the same device as nozzles; the only difference is the direction of the flow. Thus, all equations derived for nozzles hold for diffusers.

Fig. 6-5: Schematic for diffuser.

Example 6-1: Nozzle

Steam enters a converging-diverging nozzle operating at steady state with $\mathrm{P}_{1}=$ $0.05 \mathrm{MPa}, \mathrm{T}_{1}=400{ }^{\circ} \mathrm{C}$ and a velocity of $10 \mathrm{~m} / \mathrm{s}$. The steam flows through the nozzle with negligible heat transfer and no significant change in potential energy. At the exit, $\mathrm{P}_{2}=0.01 \mathrm{MPa}$, and the velocity is $665 \mathrm{~m} / \mathrm{s}$. The mass flow rate is 2 kg / s. Determine the exit area of the nozzle, in m^{2}.
Assumptions:

1. Steady state operation of the nozzle
2. Work and heat transfer are negligible, $\mathrm{Q}^{\circ}=\mathrm{W}^{\circ}=0$.
3. Change in potential energy from inlet to exit is negligible, $\triangle \mathrm{PE}=0$.

The exit area can be calculated from the mass flow rate m° :

$$
A 2=m^{\circ} V_{2} / V_{2}
$$

We need the specific volume at state 2 . So, state 2 must be found. The pressure at the exit is given; to fix the state 2 another property is required. From the energy equation enthalpy can be found:

$$
h_{2}+\frac{V_{2}^{2}}{2}=h_{1}+\frac{V_{1}^{2}}{2} \Rightarrow h_{2}=h_{1}+\frac{1}{2}\left(V_{1}^{2}-V_{2}^{2}\right)
$$

From Table A-6, $\mathrm{h}_{1}=3278.9 \mathrm{~kJ} / \mathrm{kg}$ and velocities are given.
$h_{2}=3278.9 \mathrm{~kJ} / \mathrm{kg}+\left[\frac{10^{2}-665^{2}}{2}\right]\left(\frac{\mathrm{m}}{\mathrm{s}}\right)^{2}\left[\frac{1 \mathrm{~N}}{1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}\right]\left[\frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~N} . \mathrm{m}}\right]=3057.84 \mathrm{~kJ} / \mathrm{kg}$
From Table A-6, with $\mathrm{P}_{2}=0.01 \mathrm{MPa}$, and $\mathrm{h}_{2}=3057.84 \mathrm{~kJ} / \mathrm{kg}$, (using interpolation) one finds $\mathrm{T}_{2}=300^{\circ} \mathrm{C}$ (approximately) and $\mathrm{v}_{2}=26.445 \mathrm{~m}^{3} / \mathrm{kg}$.
The exit area is:

$$
A_{2}=\frac{(2 \mathrm{~kg} / \mathrm{s})\left(26.445 \mathrm{~m}^{3} / \mathrm{kg}\right)}{665 \mathrm{~m} / \mathrm{s}}=0.07955 \mathrm{~m}^{2}
$$

Fig. 6-6: Converging-diverging nozzle.

Turbines and Compressors

In steam, gas, or hydroelectric power plants, the device that derives the electric generator is turbine. The work of turbine is positive since it is done by the fluid.
Compressors, pumps, and fans are devices used to increase the pressure of the fluid. Work is supplied to these devices, thus the work term is negative.
Common assumptions for turbines and compressors:
$Q^{\circ}=0$.
$\Delta P E=\Delta K E=0$.

Example 6-2: Turbine

Steam enters a turbine at steady state with a mass flow rate of $4600 \mathrm{~kg} / \mathrm{h}$. The turbine develops a power output of 1000 kW . At the inlet the pressure is 0.05 MPa , the temperature is $400^{\circ} \mathrm{C}$, and the velocity is $10 \mathrm{~m} / \mathrm{s}$. At the exit, the pressure is 10 kPa , the quality is 0.9 , and the velocity is $50 \mathrm{~m} / \mathrm{s}$. Calculate the rate of heat transfer between the turbine and surroundings, in kW .

Assumptions:

Steady-state operation. The change in potential energy is negligible.
The energy balance for the turbine is:

$$
\begin{aligned}
& Q_{C V}^{\bullet}-W_{C V}^{\bullet}=m \cdot\left(h_{2}+\frac{V_{2}^{2}}{2}+g z_{2}\right)-m \cdot\left(h_{1}+\frac{V_{1}^{2}}{2}+g z_{1}\right) \\
& Q_{C V}^{\bullet}=W_{C V}^{\bullet}+m^{\bullet}\left[\left(h_{2}-h_{1}\right)+\frac{1}{2}\left(V_{2}^{2}-V_{1}^{2}\right)\right]
\end{aligned}
$$

Fig. 6-7: Schematic for turbine.
Using Table A-6, $\mathrm{h}_{1}=3278.9 \mathrm{~kJ} / \mathrm{kg}$, using Table A-5 with $\mathrm{x}=0.9$,

$$
h_{2}=h_{f}+x_{2} h_{f g}=191.83 \mathrm{~kJ} / \mathrm{kg}+0.9(2392.8 \mathrm{~kJ} / \mathrm{kg})=2345.35 \mathrm{~kJ} / \mathrm{kg}
$$

Therefore,

$$
h_{2}-h_{1}=2345.35-3278.9=-933.55 \mathrm{~kJ} / \mathrm{kg}
$$

The specific kinetic energy change is:

$$
\begin{aligned}
& \quad \frac{1}{2}\left(V_{2}^{2}-V_{1}^{2}\right)=0.5\left(50^{2}-10^{2}\right)\left(\frac{\mathrm{m}}{\mathrm{~s}}\right)^{2} \frac{1 \mathrm{~N}}{1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}} \frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~N} \cdot \mathrm{~m}}=1.2 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{Q}^{\circ}{ }_{\mathrm{CV}}=(1000 \mathrm{~kW})+4600 \mathrm{~kg} / \mathrm{h}(-831.8+1.2 \mathrm{~kJ} / \mathrm{kg})(1 \mathrm{~h} / 3600 \mathrm{~s})(1 \mathrm{~kW} / 1 \mathrm{~kJ} / \mathrm{s}) \\
& =-61.3 \mathrm{~kW}
\end{aligned}
$$

Note that change in specific kinetic energy is very small. Also $Q^{\circ}{ }_{\mathrm{cv}}$ is small compared to $\mathrm{W}^{\circ}{ }_{\mathrm{cv}}$. The negative sign in $\mathrm{Q}^{\circ} \mathrm{cv}$ means that heat transfer is from CV to surroundings.

Throttling Valves

Any kind of flow restricting devices that causes a significant pressure drop in the fluid is called throttling valve.

a) an adjustable valve

b) a porous plug
c) a capillary tube

Fig. 6-8: Three kinds of throttling valves.
The pressure drop in fluid is often accompanied with a temperature drop in fluids. The magnitude of this temperature is governed by a property called the JouleThomson coefficient.

Common assumptions for throttling valves:
$Q^{\circ}=0$
$W^{\circ}=0$
$\Delta P E=\Delta K E=0$.
The conservation of energy becomes:

$$
\begin{aligned}
h_{2} & =h_{1} \\
u_{1}+P_{1} v_{1} & =u_{2}+P_{2} v_{2}
\end{aligned}
$$

The flow energy increases during the process $\left(P_{2} v_{2}>P_{1} v_{1}\right)$, and it is done at the expense of the internal energy. Thus, internal energy decreases, which is usually accompanied by a drop in temperature.

For ideal gases $h=h(T)$ and since h remains constant the temperature has to remain constant too.

Mixture Chambers (Direct Contact Heat Exchangers)

Mixture chambers are used to mix two streams of fluids. Based on mass principle, the sum of incoming flow equals to sum of leaving fluid.

Fig. 6-9: T-elbow is a mixing chamber.
Common assumptions for mixing chamber:
$Q^{\circ}=0$
$W^{\circ}=0$
$\Delta P E=\Delta K E=0$.
The conservation of energy becomes:

$$
\Sigma\left(m^{\circ} h\right)_{\text {inlet }}=\Sigma\left(m^{\circ} h\right)_{\text {outlet }}
$$

Heat Exchangers

Heat exchangers are devices where two moving fluid streams exchange heat without mixing.

Common assumptions for heat exchangers:
$W^{\circ}=0$
$\Delta P E=\Delta K E=0$.
Q° could be different depending on the selected CV , see example 6-3.
The mass and energy balance become:

$$
\begin{aligned}
& m_{1}^{\bullet}=m_{2}^{\bullet} \quad \text { and } \quad m_{3}^{\bullet}=m_{4}^{\bullet} \\
& m_{1}^{\bullet} h_{1}+m_{3}^{\bullet} h_{3}=m_{1}^{\bullet} h_{2}+m_{1}^{\bullet} h_{4}
\end{aligned}
$$

Fig. 6-10: Schematic for heat exchanger.

Example 6-3: Heat exchanger

Engine oil is to be cooled by water in a condenser. The engine oil enters the condenser with a mass flow rate of $6 \mathrm{~kg} / \mathrm{min}$ at 1 MPa and $70^{\circ} \mathrm{C}$ and leaves at $35^{\circ} \mathrm{C}$. The cooling water enters at 300 kPa and $15^{\circ} \mathrm{C}$ and leaves at $25^{\circ} \mathrm{C}$. Neglecting any pressure drops; determine a) the mass flow rate of the cooling water required, and b) the heat transfer rate from the engine oil to water.

We choose the entire heat exchanger as our control volume, thus work transfer and heat transfer to the surroundings will be zero. From mass balance:

$$
m_{1}^{\bullet}=m_{2}^{\bullet}=m_{W}^{\bullet} \quad \text { and } \quad m_{3}^{\bullet}=m_{4}^{\bullet}=m_{\text {Oil }}^{\bullet}
$$

The conservation of energy equation is:

$$
\begin{aligned}
& Q^{\bullet}-W^{\bullet}=\sum m_{e}^{\bullet}\left(h_{e}+\frac{V_{e}^{2}}{2}+g z_{e}\right)-\sum m_{i}^{\bullet}\left(h_{i}+\frac{V_{i}^{2}}{2}+g z_{i}\right) \\
& \sum m_{e}^{\cdot} h_{e}=\sum m_{e}^{\bullet} h_{e} \\
& m_{W}^{\bullet} h_{1}+m_{\text {Oil }}^{\bullet} h_{3}=m_{W}^{\cdot} h_{2}+m_{\text {Oil }}^{\bullet} h_{4} \\
& m_{W}^{\bullet}=\frac{h_{3}-h_{4}}{h_{2}-h_{1}} m_{\text {Oil }}^{\bullet}
\end{aligned}
$$

Assuming constant specific heat for both the oil and water at their average temperature,

$$
m_{W}^{\cdot}=\frac{C_{P, \text { oil }}\left(T_{3}-T_{4}\right)}{C_{P, \text { Water }}\left(T_{2}-T_{1}\right)}=\frac{\left(2.016 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{C}}\right)(70-35)}{\left(4.18 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{C}}\right)(25-15)}(6 \mathrm{~kg} / \mathrm{min})=10.1 \mathrm{~kg} / \mathrm{min}
$$

b) To determine the heat transfer from the oil to water, choose the following CV. The energy equation becomes:

$$
\begin{aligned}
& Q_{\text {Oil }}^{\bullet}-W^{\bullet}=m_{\text {Oil }}^{\bullet}(\Delta h)=m_{\text {Oil }}^{\bullet} C_{P, O i l}\left(T_{4}-T_{3}\right) \\
& Q_{\text {Oil }}^{\bullet}=(6 \mathrm{~kg} / \mathrm{min})\left(2.016 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot C}\right)(35-70)=-423.36 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

