Conduction Heat Transfer

Reading
10-1 \rightarrow 10-6

Problems

10-20, 10-35, 10-49, 10-54, 10-59, 10-69, 10-71, 10-92, 10-126, 10-143, 10-157, 10-162
$11-1 \rightarrow 11-2 \quad 11-14,11-17,11-36,11-41,11-46,11-97,11-104$

General Heat Conduction

From a $1^{\text {st }}$ law energy balance:

$$
\frac{\partial E}{\partial t}=\dot{Q}_{x}-\dot{Q}_{x+\Delta x}
$$

If the volume to the element is given as $\boldsymbol{V}=\boldsymbol{A} \cdot \boldsymbol{\Delta x}$, then the mass of the element is

$$
m=\rho \cdot A \cdot \Delta x
$$

The energy term $(\boldsymbol{K E}=\boldsymbol{P E}=\mathbf{0})$ is

$$
E=m \cdot u=(\rho \cdot A \cdot \Delta x) \cdot u
$$

For an incompressible substance the internal energy is $\boldsymbol{d} \boldsymbol{u}=\boldsymbol{C} \boldsymbol{d} \boldsymbol{T}$ and we can write

$$
\frac{\partial E}{\partial t}=\rho C A \Delta x \frac{\partial T}{\partial t}
$$

Heat flow along the \boldsymbol{x}-direction is a product of the temperature difference.

$$
\dot{Q}_{x}=\frac{k A}{\Delta x}\left(T_{x}-T_{x+\Delta x}\right)
$$

where \boldsymbol{k} is the thermal conductivity of the material. In the limit as $\Delta x \rightarrow 0$

$$
\dot{Q}_{x}=-k A \frac{\partial T}{\partial x}
$$

This is Fourier's law of heat conduction. The $\boldsymbol{- v e}$ in front of \boldsymbol{k} guarantees that we adhere to the $2^{\text {nd }}$ law and that heat always flows in the direction of lower temperature.

We can write the heat flow rate across the differential length, $\boldsymbol{\Delta x}$ as a truncated Taylor series expansion as follows

$$
\dot{Q}_{x+\Delta x}=\dot{Q}_{x}+\frac{\partial \dot{Q}_{x}}{\partial x} \Delta x
$$

when combined with Fourier's equation gives

$$
\dot{Q}_{x+\Delta x}=\underbrace{-k A \frac{\partial T}{\partial x}}_{\dot{Q}_{x}}-\frac{\partial}{\partial x}\left(k A \frac{\partial T}{\partial x}\right) \Delta x
$$

Noting that

$$
\dot{Q}_{x}-\dot{Q}_{x+\Delta x}=\frac{\partial E}{\partial t}=\rho C A \Delta x \frac{\partial T}{\partial t}
$$

By removing the common factor of $\boldsymbol{A} \boldsymbol{\Delta} \boldsymbol{x}$ we can then write the general 1-D conduction equation as

$$
\underbrace{\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)}_{\begin{array}{c}
\text { longitudinal } \\
\text { conduction }
\end{array}}=\underbrace{\rho C \frac{\partial T}{\partial t}}_{\begin{array}{c}
\text { thermal } \\
\text { inertia }
\end{array}}
$$

Steady Conduction

- $\frac{\partial T}{\partial t} \rightarrow 0$
- properties are constant
- temperature varies in a linear manner
- heat flow rate defined by Fourier's equation
- resistance to heat flow: $R=\frac{\Delta T}{\dot{Q}}$

Transient Conduction

- properties are constant
- therefore $\frac{\partial^{2} T}{\partial x^{2}}=\frac{\rho C}{k} \frac{\partial T}{\partial t}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$
where thermal diffusivity is defined as $\alpha=\frac{k}{\rho C}$
- exact solution is complicated
- partial differential equation can be solved using approximate or graphical methods

Steady Heat Conduction

Thermal Resistance Networks

Thermal circuits based on heat flow rate, \dot{Q}, temperature difference, $\boldsymbol{\Delta T}$ and thermal resistance, \boldsymbol{R}, enable analysis of complex systems.

Thermal Resistance

The thermal resistance to heat flow $\left({ }^{\circ} \boldsymbol{C} / \boldsymbol{W}\right)$ can be constructed for all heat transfer mechanisms, including conduction, convection, and radiation as well as contact resistance and spreading resistance.

Conduction: $\quad \boldsymbol{R}_{\text {cond }}=\frac{L}{k A}$
Convection: $\quad R_{\text {conv }}=\frac{1}{h A}$

Radiation: $\quad R_{r a d}=\frac{1}{h_{r a d} A} \quad \longrightarrow \quad h_{r a d}=\epsilon \sigma\left(T_{s}^{2}+T_{s u r r}^{2}\right)\left(T_{s}+T_{\text {surr }}\right)$
Contact: $\quad \boldsymbol{R}_{\boldsymbol{c}}=\frac{1}{\boldsymbol{h}_{\boldsymbol{c}} \boldsymbol{A}} \quad \longrightarrow \quad \boldsymbol{h}_{\boldsymbol{c}}$ see Table 10-2

Cartesian Systems

Resistances in Series

The heat transfer across the fluid/solid interface is based on Newton's law of cooling

$$
\dot{Q}=h A\left(T_{i n}-T_{o u t}\right)=\frac{T_{i n}-T_{o u t}}{R_{\text {conv }}} \quad \text { where } \quad R_{c o n v}=\frac{1}{h A}
$$

The heat flow through a solid material of conductivity, \boldsymbol{k} is

$$
\dot{Q}=\frac{k A}{L}\left(T_{i n}-T_{o u t}\right)=\frac{T_{i n}-T_{\text {out }}}{R_{\text {cond }}} \quad \text { where } \quad R_{\text {cond }}=\frac{L}{k A}
$$

By summing the temperature drop across each section, we can write:

$$
\begin{aligned}
\dot{Q} R_{1} & =\left(T_{\infty_{1}}-T_{1}\right) \\
\dot{Q} R_{2} & =\left(T_{1}-T_{2}\right) \\
\dot{Q} R_{3} & =\left(T_{2}-T_{3}\right) \\
\dot{Q} R_{4} & =\left(T_{3}-T_{\infty_{2}}\right) \\
\dot{\dot{Q}\left(\overline{\sum_{i=1}^{4} R_{i}}\right)} & =\left(T_{\infty_{1}}-T_{\infty_{2}}\right)
\end{aligned}
$$

The total heat flow across the system can be written as

$$
\dot{Q}=\frac{T_{\infty_{1}}-T_{\infty_{2}}}{R_{\text {total }}} \quad \text { where } \quad R_{\text {total }}=\sum_{i=1}^{4} R_{i}
$$

Resistances in Parallel

For systems of parallel flow paths as shown above, we can use the $1^{\text {st }}$ law to preserve the total energy

$$
\dot{Q}=\dot{Q}_{1}+\dot{Q}_{2}
$$

where we can write

$$
\begin{aligned}
& \dot{Q}_{1}=\frac{T_{1}-T_{2}}{R_{1}} \quad \quad R_{1}=\frac{L}{k_{1} A_{1}} \\
& \dot{Q}_{2}=\frac{T_{1}-T_{2}}{R_{2}} \\
& R_{2}=\frac{L}{k_{2} A_{2}} \\
& \dot{Q}=\sum \dot{Q}_{i}=\left(T_{1}-\overline{\left.T_{2}\right)\left(\sum \frac{1}{R_{i}}\right)} \quad \text { where } \quad \overline{\frac{1}{R_{\text {total }}}=\sum \frac{1}{R_{i}}}=U A\right.
\end{aligned}
$$

In general, for parallel networks we can use a parallel resistor network as follows:

$$
\frac{1}{R_{t o t a l}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots
$$

and

$$
\dot{Q}=\frac{T_{1}-T_{2}}{R_{t o t a l}}
$$

Thermal Contact Resistance

- real surfaces have microscopic roughness, leading to non-perfect contacts where
- $1-4 \%$ of the surface area is in solid-solid contact, the remainder consists of air gaps
- the total heat flow rate can be written as

$$
\dot{Q}_{t o t a l}=h_{c} A \Delta T_{i n t e r f a c e}
$$

where:
$\boldsymbol{h}_{\boldsymbol{c}}=$ thermal contact conductance
$\boldsymbol{A}=$ apparent or projected area of the contact
$\boldsymbol{\Delta} \boldsymbol{T}_{\text {interface }}=$ average temperature drop across the interface

The conductance, $\boldsymbol{h}_{\boldsymbol{c}}$ and the contact resistance, $\boldsymbol{R}_{\boldsymbol{c}}$ can be written as

$$
h_{c} A=\frac{\dot{Q}_{\text {total }}}{\Delta T_{\text {interface }}}=\frac{1}{R_{c}}
$$

Table 10-2 can be used to obtain some representative values for contact conductance

Table 10-2: Contact Conductances

				Chapter 10	I 415
TABLE 10-2					
Thermal contact conductance of some metal surfaces in air (from various sources)					
Material	Surface condition	Roughness, $\mu \mathrm{m}$	Temperature, ${ }^{\circ} \mathrm{C}$	Pressure, MPa	$\begin{gathered} h_{c,}{ }^{*} \\ \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C} \end{gathered}$
Identical Metal Pairs					
416 Stainless steel	Ground	2.54	90-200	0.17-2.5	3800
304 Stainless steel	Ground	1.14	20	4-7	1900
Aluminum	Ground	2.54	150	1.2-2.5	11,400
Copper	Ground	1.27	20	1.2-20	143,000
Copper	Milled	3.81	20	1-5	55,500
Copper (vacuum)	Milled	0.25	30	0.17-7	11,400
Dissimilar Metal Pairs					
Stainless steel-				10	2900
Aluminum		20-30	20	20	3600
Stainless steel-				10	16,400
Aluminum		1.0-2.0	20	20	20,800
Steel Ct-30-				10	50,000
Aluminum	Ground	1.4-2.0	20	15-35	59,000
Steel Ct-30-Aluminum				10	4800
	Milled	4.5-7.2	20	30	8300
				5	42,000
Aluminum-Copper	Ground	1.17-1.4	20	15	56,000
Aluminum-Copper				10	12,000
	Milled	4.4-4.5	20	20-35	22,000

* Divide the given values by 5.678 to convert to $\mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$.

Cylindrical Systems

Steady, 1D heat flow from \boldsymbol{T}_{1} to $\boldsymbol{T}_{\mathbf{2}}$ in a cylindrical system occurs in a radial direction where the lines of constant temperature (isotherms) are concentric circles, as shown by the dotted line and $T=T(r)$.
Performing a $1^{\text {st }}$ law energy balance on a control mass from the annular ring of the cylindrical cylinder gives:

$$
\dot{Q}_{r}=\frac{T_{1}-T_{2}}{\left(\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k \mathcal{L}}\right)} \quad \text { where } \quad R=\left(\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k \mathcal{L}}\right)
$$

Composite Cylinders

Then the total resistance can be written as

$$
\begin{aligned}
R_{\text {total }} & =R_{1}+R_{2}+R_{3}+R_{4} \\
& =\frac{1}{h_{1} A_{1}}+\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k_{2} \mathcal{L}}+\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi k_{3} \mathcal{L}}+\frac{1}{h_{4} A_{4}}
\end{aligned}
$$

Example 5-1: Determine the temperature ($\boldsymbol{T}_{\mathbf{1}}$) of an electric wire surrounded by a layer of plastic insulation with a thermal conductivity if $0.15 \mathrm{~W} / \boldsymbol{m K}$ when the thickness of the insulation is a) 2 mm and b) 4 mm , subject to the following conditions:

Given:

$$
\begin{aligned}
I & =10 A \\
\Delta \epsilon=\epsilon_{1}-\epsilon_{2} & =8 V \\
D & =3 \mathrm{~mm} \\
\mathcal{L} & =5 \mathrm{~m} \\
k & =0.15 \mathrm{~W} / m K \\
T_{\infty} & =30^{\circ} \mathrm{C} \\
h & =12 \mathrm{~W} / \mathrm{m}^{2} \cdot K
\end{aligned}
$$

Find:

$$
\begin{aligned}
T_{1} & =? ? ? \\
\text { when: } & \\
\delta & =2 \mathrm{~mm} \\
\delta & =4 \mathrm{~mm}
\end{aligned}
$$

Critical Radius of Insulation

Consider a steady, 1-D problem where an insulation cladding is added to the outside of a tube with constant surface temperature $\boldsymbol{T}_{\boldsymbol{i}}$. What happens to the heat transfer as insulation is added, i.e. we increase the thickness of the insulation?

The resistor network can be written as a series combination of the resistance of the insulation, \boldsymbol{R}_{1} and the convective resistance, $\boldsymbol{R}_{\mathbf{2}}$

$$
R_{\text {total }}=R_{1}+R_{2}=\frac{\ln \left(r_{o} / r_{i}\right)}{2 \pi k \mathcal{L}}+\frac{1}{h 2 \pi r_{o} \mathcal{L}}
$$

Could there be a situation in which adding insulation increases the overall heat transfer?

$$
\frac{d R_{t o t a l}}{d r_{o}}=\frac{1}{2 \pi k r_{o} \mathcal{L}}-\frac{1}{h 2 \pi r_{o}^{2} \mathcal{L}}=0 \quad \Rightarrow \quad r_{c r, c y l}=\frac{k}{h} \quad[m]
$$

There is always a value of $\boldsymbol{r}_{c r, c a l}$, but there is a minimum in heat transfer only if $\boldsymbol{r}_{\boldsymbol{c r}, \text { cal }}>\boldsymbol{r}_{\boldsymbol{i}}$

Spherical Systems

For steady, 1D heat flow in spherical geometries we can write the heat transfer in the radial direction as

$$
\dot{Q}=\frac{4 \pi k r_{i} r_{o}}{\left(r_{0}-r_{i}\right)}\left(T_{i}-T_{o}\right)=\frac{\left(T_{i}-T_{o}\right)}{R}
$$

where: $\quad \boldsymbol{R}=\frac{r_{o}-r_{i}}{4 \pi k r_{i} r_{o}}$

The critical radius of insulation for a spherical shell is given as

$$
r_{c r, \text { sphere }}=\frac{2 k}{h} \quad[m]
$$

Heat Transfer from Finned Surfaces

We can establish a $1^{\text {st }}$ law balance over the thin slice of the fin between \boldsymbol{x} and $\boldsymbol{x}+\boldsymbol{\Delta x}$ such that

$$
\dot{Q}_{x}-\dot{Q}_{x+\Delta x}-\underbrace{P \Delta x}_{A_{\text {surface }}} h\left(T-T_{\infty}\right)=0
$$

From Fourier's law we know

$$
\dot{Q}_{x}-\dot{Q}_{x+\Delta x}=k A_{c} \frac{d^{2} T}{d x^{2}} \Delta x
$$

Therefore the conduction equation for a fin with constant cross section is

$$
\underbrace{\boldsymbol{k} A_{c} \frac{d^{2} T}{\partial x^{2}}}_{\begin{array}{c}
\text { longitudinal } \\
\text { conduction }
\end{array}}-\underbrace{\boldsymbol{h P (T - T _ { \infty })}}_{\begin{array}{c}
\text { lateral } \\
\text { convection }
\end{array}}=0
$$

Let the temperature difference between the fin and the surroundings (temperature excess) be $\boldsymbol{\theta}=\boldsymbol{T}(\boldsymbol{x})-\boldsymbol{T}_{\infty}$ which allows the 1-D fin equation to be written as

$$
\frac{d^{2} \theta}{d x^{2}}-m^{2} \theta=0 \quad \text { where } \quad m=\left(\frac{h P}{k A_{c}}\right)^{1 / 2}
$$

The solution to the differential equation for $\boldsymbol{\theta}$ is

$$
\theta(x)=C_{1} \sinh (m x)+C_{2} \cosh (m x) \quad\left[\equiv \theta(x)=C_{1} e^{m x}+C_{2} e^{-m x}\right]
$$

Potential boundary conditions include:

$$
\begin{aligned}
& \text { Base: } \rightarrow @ \boldsymbol{x}=\mathbf{0} \quad \boldsymbol{\theta}=\boldsymbol{\theta}_{\boldsymbol{b}} \\
& \text { Tip: } \rightarrow @ x=\boldsymbol{L}=\boldsymbol{\theta}_{\boldsymbol{L}} \quad[\boldsymbol{T} \text {-specified tip] } \\
& \begin{array}{lll}
\boldsymbol{\theta}=\left.\frac{d \boldsymbol{\theta}}{\boldsymbol{d x}}\right|_{x=L}=\mathbf{0} & \text { [adiabatic (insulated) tip] } \\
\boldsymbol{\theta} \rightarrow \mathbf{0} & \text { [infinitely long fin] }
\end{array}
\end{aligned}
$$

Substituting the boundary conditions to find the constants of integration, the temperature distribution and fin heat transfer rate can be determined as follows:

Case 1: Prescribed temperature $\left(\boldsymbol{\theta}_{@} \boldsymbol{x + L}=\boldsymbol{\theta}_{L}\right)$

$$
\frac{\theta(x)}{\theta_{b}}=\frac{\left(\theta_{L} / \theta_{b}\right) \sinh m x+\sinh m(L-x)}{\sinh m L}
$$

$$
\dot{Q}_{b}=M \frac{\left(\cosh m L-\theta_{L} / \theta_{b}\right)}{\sinh m L}
$$

Case 2: Adiabatic tip $\left(\left.\frac{d \boldsymbol{\theta}}{\boldsymbol{d x}}\right|_{x=L}=0\right)$

$$
\frac{\theta(x)}{\theta_{b}}=\frac{\cosh m(L-x)}{\cosh m L} \quad \dot{Q}_{b}=M \tanh m L
$$

Case 3: Infinitely long fin $(\boldsymbol{\theta} \boldsymbol{\rightarrow})$

$$
\frac{\theta(x)}{\theta_{b}}=e^{-m x} \quad \dot{Q}_{b}=M
$$

where

$$
\begin{aligned}
m & =\sqrt{h P /\left(k A_{c}\right)} \\
M & =\sqrt{h P k A_{c}} \theta_{b} \\
\theta_{b} & =T_{b}-T_{\infty}
\end{aligned}
$$

Fin Efficiency and Effectiveness

The dimensionless parameter that compares the actual heat transfer from the fin to the ideal heat transfer from the fin is the fin efficiency

$$
\eta=\frac{\text { actual heat transfer rate }}{\underset{\text { maximum heat transfer rate when }}{\text { the entire fin is at } T_{b}}}=\frac{\dot{Q}_{b}}{\boldsymbol{h P L} \boldsymbol{\theta}_{b}}
$$

If the fin has a constant cross section then

$$
\eta=\frac{\tanh (m L)}{m L}
$$

An alternative figure of merit is the fin effectiveness given as

$$
\epsilon_{f i n}=\frac{\text { total fin heat transfer }}{\text { the heat transfer that would have }}=\frac{\dot{Q}_{b}}{\boldsymbol{h} \boldsymbol{A}_{c} \boldsymbol{\theta}_{b}}
$$

How to Determine the Appropriate Fin Length

- theoretically an infinitely long fin will dissipate the most heat
- but practically, an extra long fin is inefficient given the exponential temperature decay over the length of the fin
- so what is a realistic fin length in order to optimize performance and cost

If we determine the ratio of heat flow for a fin with an insulated tip (Case 2) versus an infinitely long fin (Case 3) we can assess the relative performance of a conventional fin

$$
\frac{\dot{Q}_{\text {Case } 2}}{\dot{Q}_{\text {Case } 3}}=\frac{M \tanh m L}{M}=\tanh m L
$$

Transient Heat Conduction

Performing a $1^{\text {st }}$ law energy balance on a plane wall gives

$$
\begin{aligned}
\dot{Q}_{c o n d} & =\frac{T_{H}-T_{s}}{L /(k \cdot A)} \\
& =\dot{Q}_{c o n v}=\frac{T_{s}-T_{\infty}}{1 /(h \cdot A)}
\end{aligned}
$$

where the Biot number can be obtained as follows:

$$
\frac{\boldsymbol{T}_{\boldsymbol{H}}-\boldsymbol{T}_{s}}{\boldsymbol{T}_{s}-T_{\infty}}=\frac{L /(\boldsymbol{k} \cdot \boldsymbol{A})}{1 /(\boldsymbol{h} \cdot \boldsymbol{A})}=\frac{\text { internal resistance to H.T. }}{\text { external resistance to H.T. }}=\frac{\boldsymbol{h} \boldsymbol{L}}{\boldsymbol{k}}=\boldsymbol{B i}
$$

$\boldsymbol{R}_{\text {int }} \ll \boldsymbol{R}_{\text {ext }}$: the Biot number is small and we can conclude

$$
\boldsymbol{T}_{\boldsymbol{H}}-\boldsymbol{T}_{s} \ll \boldsymbol{T}_{s}-\boldsymbol{T}_{\infty} \quad \text { and in the limit } \boldsymbol{T}_{\boldsymbol{H}} \approx \boldsymbol{T}_{s}
$$

$\boldsymbol{R}_{\text {ext }} \ll \boldsymbol{R}_{\boldsymbol{i n t}}$: the Biot number is large and we can conclude

$$
\boldsymbol{T}_{s}-\boldsymbol{T}_{\infty} \ll \boldsymbol{T}_{\boldsymbol{H}}-\boldsymbol{T}_{s} \quad \text { and in the limit } \boldsymbol{T}_{s} \approx \boldsymbol{T}_{\infty}
$$

Transient Conduction Analysis

- if the internal temperature of a body remains relatively constant with respect to time
- can be treated as a lumped system analysis
- heat transfer is a function of time only, $\boldsymbol{T}=\boldsymbol{T}(\boldsymbol{t})$

$B \boldsymbol{B} \leq \mathbf{0 . 1}$: temperature profile is not a function of position temperature profile only changes with respect to time $\rightarrow \boldsymbol{T}=\boldsymbol{T}(\boldsymbol{t})$ use lumped system analysis
$B \boldsymbol{B i}>0.1$: temperature profile changes with respect to time and position $\rightarrow \boldsymbol{T}=\boldsymbol{T}(\boldsymbol{x}, \boldsymbol{t})$ use approximate analytical or graphical solutions (Heisler charts)

Lumped System Analysis

At $t>0, T=T(x, y, z, t)$, however, when $B i \leq 0.1$ then we can assume $\boldsymbol{T} \approx \boldsymbol{T}(t)$.

Performing a $1^{\text {st }}$ law energy balance on the control volume shown below

$$
\frac{d E_{C . M .}}{d t}=\dot{E}_{\text {in }}-\dot{E}_{o u t}+\dot{E}_{g^{0}}^{\nearrow^{0}}
$$

If we assume $\boldsymbol{P E}$ and $\boldsymbol{K} \boldsymbol{E}$ to be negligible then

$$
\frac{d U}{d t}=-\dot{Q} \quad \Leftarrow \frac{d U}{d t}<0 \text { implies } U \text { is decreasing }
$$

For an incompressible substance specific heat is constant and we can write

$$
\underbrace{m C}_{\equiv C_{t h}} \frac{d T}{d t}=-\underbrace{A h}_{1 / R_{t h}}\left(T-T_{\infty}\right)
$$

where $\boldsymbol{C}_{\boldsymbol{t} \boldsymbol{h}}=$ lumped capacitance

$$
C_{t h} \frac{d T}{d t}=-\frac{1}{R_{t h}}\left(T-T_{\infty}\right)
$$

We can integrate and apply the initial condition, $\boldsymbol{T}=\boldsymbol{T}_{\boldsymbol{i}} @ \boldsymbol{t}=\mathbf{0}$ to obtain

$$
\frac{T(t)-T_{\infty}}{T_{i}-T_{\infty}}=e^{-t /\left(R_{t h} \cdot C_{t h}\right)}=e^{-t / \tau}=e^{-b t}
$$

where

$$
\begin{aligned}
\frac{1}{b} & =\tau \\
& =R_{t h} \cdot C_{t h} \\
& =\text { thermal time constant } \\
& =\frac{m C}{A h}=\frac{\rho V C}{A h}
\end{aligned}
$$

The total heat transferred over the time period $0 \rightarrow t^{*}$ is

$$
Q_{t o t a l}=m C\left(T_{i}-T_{\infty}\right)\left[1-e^{-t^{*} / \tau}\right]
$$

Example 5-2: Determine the time it takes a fuse to melt if a current of $\mathbf{3} \boldsymbol{A}$ suddenly flows through the fuse subject to the following conditions:

Given:

$D=$
0.1 mm
$T_{\text {melt }}=900^{\circ} C$
$k=20 W / m K$
$L=10 \mathrm{~mm}$
$T_{\infty}=30^{\circ} C$
$\alpha=5 \times 10^{-5} \mathrm{~m}^{2} / s \equiv k / \rho C_{p}$

Assume:

- constant resistance $\mathcal{R}=\mathbf{0 . 2}$ ohms
- the overall heat transfer coefficient is $h=h_{c o n v}+h_{r a d}=10 \mathrm{~W} / \mathrm{m}^{2} K$
- neglect any conduction losses to the fuse support

Approximate Analytical and Graphical Solutions (Heisler Charts)

If $B i>0.1$

- need to solve the partial differential equation for temperature
- leads to an infinite series solution \Rightarrow difficult to obtain a solution (see pp. 481-483 for exact solution by separation of variables)

We must find a solution to the PDE

$$
\frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{\alpha} \frac{\partial T}{\partial t} \Rightarrow \frac{T(x, t)-T_{\infty}}{T_{i}-T_{\infty}}=\sum_{n=1,3,5 \ldots}^{\infty} A_{n} e^{\left(-\frac{\lambda_{n}}{L}\right)^{2} \alpha t} \cos \left(\frac{\lambda_{n} x}{L}\right)
$$

By using dimensionless groups, we can reduce the temperature dependence to 3 dimensionless parameters

Dimensionless Group Formulation

temperature	$\boldsymbol{\theta}(\boldsymbol{x}, \boldsymbol{t})=\frac{T(x, t)-T_{\infty}}{T_{i}-T_{\infty}}$
position	$X=x / L$
heat transfer	$B \boldsymbol{X}=\boldsymbol{L} / \boldsymbol{k} \quad$ Biot number
time	$\boldsymbol{F o}=\alpha t / L^{2} \quad$ Fourier number

note: Cengel uses $\boldsymbol{\tau}$ instead of $\boldsymbol{F o}$.
Now we can write

$$
\theta(x, t)=f(X, B i, F o)
$$

The characteristic length for the Biot number is

slab	$\mathcal{L}=\boldsymbol{L}$
cylinder	$\mathcal{L}=r_{o}$
sphere	$\mathcal{L}=r_{o}$

contrast this versus the characteristic length for the lumped system analysis.

With this, two approaches are possible

1. use the first term of the infinite series solution. This method is only valid for $\boldsymbol{F o} \boldsymbol{\boldsymbol { o }} \mathbf{0 . 2}$
2. use the Heisler charts for each geometry as shown in Figs. 11-15, 11-16 and 11-17

First term solution: Fo $>0.2 \rightarrow$ error about 2% max.

Plane Wall: $\quad \theta_{\text {wall }}(x, t)=\frac{T(x, t)-T_{\infty}}{T_{i}-T_{\infty}}=A_{1} e^{-\lambda_{1}^{2} F o} \cos \left(\lambda_{1} x / L\right)$

Cylinder: $\quad \theta_{c y l}(r, t)=\frac{T(r, t)-T_{\infty}}{T_{i}-T_{\infty}}=A_{1} e^{-\lambda_{1}^{2} F o} \mathrm{~J}_{0}\left(\lambda_{1} r / r_{o}\right)$

Sphere: $\quad \theta_{s p h}(r, t)=\frac{T(r, t)-T_{\infty}}{T_{i}-T_{\infty}}=A_{1} e^{-\lambda_{1}^{2} F o} \frac{\sin \left(\lambda_{1} r / r_{o}\right)}{\lambda_{1} r / r_{o}}$
$\boldsymbol{\lambda}_{1}, \boldsymbol{A}_{1}$ can be determined from Table 11-2 based on the calculated value of the Biot number (will likely require some interpolation). The Bessel function, \boldsymbol{J}_{0} can be calculated using Table 11-3.

Using Heisler Charts

- find \boldsymbol{T}_{0} at the center for a given time (Table 11-15 a, Table 11-16 a or Table 11-17 a)
- find \boldsymbol{T} at other locations at the same time (Table 11-15 b, Table 11-16 b or Table 11-17 b)
- find $\boldsymbol{Q}_{\text {tot }}$ up to time \boldsymbol{t} (Table 11-15 c, Table 11-16 c or Table 11-17 c)

Example 5-3: An aluminum plate made of Al 2024-T6 with a thickness of 0.15 m is initially at a temperature of 300 K . It is then placed in a furnace at 800 K with a convection coefficient of $500 \mathrm{~W} / \mathrm{m}^{2} K$.

Find: i) the time (s) for the plate midplane to reach 700 K
ii) the surface temperature at this condition. Use both the Heisler charts and the approximate analytical, first term solution.

