
First Law of Thermodynamics

Reading Problems
3-2→ 3-7 3-40, 3-54, 3-105
5-1→ 5-2 5-8, 5-25, 5-29, 5-37, 5-40, 5-42, 5-63, 5-74, 5-84, 5-109
6-1→ 6-5 6-44, 6-51, 6-60, 6-80, 6-94, 6-124, 6-168, 6-173

Control Mass (Closed System)
In this section we will examine the case of a control surface that is closed to mass flow, so that no
mass can escape or enter the defined control region.

Conservation of Mass
Conservation of Mass, which states that mass cannot be created or destroyed, is implicitly satisfied
by the definition of a control mass.

Conservation of Energy
The first law of thermodynamics states “Energy cannot be created or destroyed it can only change
forms”.

energy entering - energy leaving = change of energy within the system

Sign Convention
Cengel Approach

Heat Transfer: heat transfer to a system is positive and heat transfer from a system is negative.

Work Transfer: work done by a system is positive and work done on a system is negative.

For instance: moving boundary work is defined as:

Wb =
∫ 2

1
P dV

During a compression process, work is done on the system
and the change in volume goes negative, i.e. dV < 0. In
this case the boundary work will also be negative.
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Culham Approach

Using my sign convention, the boundary work is defined as:

Wb = −
∫ 2

1
P dV

During a compression process, the change in volume
is still negative but because of the negative sign on the
right side of the boundary work equation, the bound-
ary work directed into the system is considered positive.
Any form of energy that adds to the system is considered positive.

Example: A Gas Compressor

Performing a 1st law energy balance:


Initial
Energy
E1

 +
−

{
Energy gainW1−2

Energy loss Q1−2

}
=


Final
Energy
E2


E1 +W1−2 −Q1−2 = E2 ⇒ ∆E = Q−W

A first law balance for a control mass can also be written in differential form as follows:

dE = δQ− δW

Note: d or ∆ for a change in property and δ for a path function
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The differential form of the energy balance can be written as a rate equation by dividing through
by dt, a differential time, and then letting dt→ 0 in the limit to give

dE

dt
=
δQ

dt
−
δW

dt
⇒

dE

dt
= Q̇− Ẇ

where

dE

dt
= rate of energy increase within the system, ≡

dU

dt
+
d KE

dt
+
d PE

dt

Q̇ = rate of heat transfer

Ẇ = rate of work done, ≡ power

• most closed systems encountered in practice are stationary i.e. the velocity and the elevation
of the center of gravity of the system remain constant during the process

• for stationary systems we can assume that
d KE

dt
= 0 and

d PE

dt
= 0

Example 3-1: During steady-state operation, a gearbox receives Ẇin = 60 kW through
the input shaft and delivers power through the output shaft. For the gearbox as the system, the
rate of energy transfer by heat is given by Newton’s Law of Cooling as Ẇ = hA(Tb − Tf).
where h, the heat transfer coefficient, is constant (h = 0.171 kW/m2 · K) and the outer
surface area of the gearbox is A = 1.0 m2. The temperature of the outer surface of the gear-
box is Tb = 300 K and the ambient temperature surrounding the gearbox is T∞ = 293 K.
Evaluate the rate of heat transfer, Q̇ and the power delivered through the output shaft, Ẇout.
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Forms of Energy Transfer

Work Versus Heat
• Work is macroscopically organized energy transfer.

• Heat is microscopically disorganized energy transfer.


more on this when we discuss entropy

Heat Energy
• heat is defined as a form of energy that is transferred solely due to a temperature difference

(without mass transfer)

• heat transfer is a directional (or vector) quantity with magnitude, direction and point of action

• modes of heat transfer:

– conduction: diffusion of heat in a stationary medium (Chapters 10, 11 & 12)

– convection: it is common to include convective heat transfer in traditional heat transfer
analysis. However, it is considered mass transfer in thermodynamics. (Chapters 13 &
14)

– radiation: heat transfer by photons or electromagnetic waves (Chapter 15)

Work Energy
• work is a form of energy in transit. One should not attribute work to a system.

• work (like heat) is a “path function” (magnitude depends on the process path)

• work transfer mechanisms in general, are a force acting over a distance

Mechanical Work

W12 =
∫ 2

1
F ds

• if there is no driving or resisting force in the process (e.g. expansion in a vacuum) or the
boundaries of the system do not move or deform,W12 = 0.

Moving Boundary Work

W12 = −
∫ 2

1
F ds = −

∫ 2

1
P ·A ds = −

∫ 2

1
P dV

• a decrease in the volume, dV → −ve results in work addition (+ve) on the system
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• consider compression in a piston/cylinder,
whereA is the piston cross sectional area (fric-
tionless)

• the area under the process curve on a P − V
diagram is proportional to

∫ 2

1
P dV

• the work is:

– +ve for compression

– −ve for expansion

• sometimes called P dV work or
compression /expansion work

• polytropic processes: where PV n = C

• examples of polytropic processes include:

Isobaric process: if n = 0 then P = C and we have a constant pressure process

Isothermal process: if n = 1 then from the ideal gas equation PV = RT and PV is
only a function of temperature

Isometric process: if n → ∞ then P 1/nV = C1/n and we have a constant volume
process

Isentropic process: if n = k = Cp/Cv then we have an isentropic process. (tabulated
values for k are given in Table A-2) If we combine

Pvk = C with Pv = RT

we get the isentropic equations, given as:
T2

T1

=

(
v1

v2

)k−1

=

(
P2

P1

)(k−1)/k

Case 1: for an ideal gas with n = 1 → W12 = −C ln
V2

V1

Case 2: for n 6= 1 → W12 =
P1V1 − P2V2

1− n
(in general)

→ W12 =
mR(T1 − T2)

1− n
(ideal gas)
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Example 3-2: A pneumatic lift as shown in the figure below undergoes a quassi-equilibrium
process when the valve is opened and air travels from tank A to tank B.

A AB

B
air

atm.

valve closed valve open

control mass

system

Ap

mp

state 1 state 2

The initial conditions are given as follows and the final temperatures can be assumed to be the
same as the initial temperatures.

Patm = 100 kPa 1 Pa = 1 N/m2

mp = 500 kg Ap = 0.0245 m2

VA,1 = 0.4 m3 VB,1 = 0.1 m3

PA,1 = 500 kPa PB,1 = 100 kPa
TA,1 = 298 K TB,1 = 298 K = 25 ◦C

Find the final pressures PA,2 and PB,2 and the work, W12, in going from state 1 to state 2.

Control Volume (Open System)
The major difference between a Control Mass and and Control Volume is that mass crosses the
system boundary of a control volume.

CONSERVATION OF MASS:

Unlike a control mass approach, the control volume approach does not implicitly satisfy
conservation of mass, therefore we must make sure that mass is neither created nor destroyed
in our process.

{
rate of increase of
mass within the CV

}
=

{
net rate of

mass flow IN

}
−
{

net rate of
mass flow OUT

}
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CONSERVATION OF ENERGY:

ECV (t) + δQ+ δWshaft + (∆EIN −∆EOUT )+

(δWIN − δWOUT ) = ECV (t+ ∆t) (1)

What is flow work?
This is the work required to pass the flow across the system boundaries.

∆mIN = ρIN

volume︷ ︸︸ ︷
AIN VIN ∆t

δWIN = F · distance

= PIN AIN︸ ︷︷ ︸
F

· VIN ∆t︸ ︷︷ ︸
∆s

=
PIN ∆mIN

ρIN

since v = 1/ρ
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δWIN = (P v ∆m)IN → flow work (2)

Similarly

δWOUT = (P v ∆m)OUT (3)

Substituting Eqs. 2 and 3 into Eq. 1 gives the 1st law for a control volume

ECV (t+ ∆t)− ECV (t) = δQ+ δWshaft + ∆mIN(e+ Pv)IN

−∆mOUT (e+ Pv)OUT (4)

Equation 4 can also be written as a rate equation→ divide through by ∆t and take the limit
as ∆t→ 0

d

dt
ECV = Q̇+ Ẇshaft + [ṁ(e+ Pv)]IN − [ṁ(e+ Pv)]OUT

where:

e+ Pv = u+ Pv︸ ︷︷ ︸ +
(V)2

2
+ gz

= h(enthalpy) + KE + PE

Example 3-3: Determine the heat flow rate, Q̇, necessary to sustain a steady flow process
where liquid water enters a boiler at 120 ◦C and 10 MPa and exits the boiler at 10 MPa
and a quality of 1 for a mass flow rate is 1 kg/s. The effects of potential and kinetic energy
are assumed to be negligible.

L

G

H O ( )2 l

in

out

steam

Q
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Example 3-4: Steam with a mass flow rate of 1.5 kg/s enters a steady-flow turbine with a
flow velocity of 50 m/s at 2 MPa and 350 ◦C and leaves at 0.1 MPa, a quality of 1,
and a velocity of 200 m/s. The rate of heat loss from the uninsulated turbine is 8.5 kW .
The inlet and exit to the turbine are positioned 6 m and 3 m above the reference position,
respectively. Determine the power output from the turbine.
Note: include the effects of kinetic and potential energy in the calculations.

Q

W

in

out

The Carnot Cycle
If the heat engine is a reversible system where no entropy is generate internally, we refer to the
cycle as the Carnot cycle.

T

T

T

s s s

Q

Q

Q

W

P  = P

P  = P

H

H

L

L

1

1

2

4

4

3

in

out

where the efficiency is given as:

η = 1−
TL

TH

⇐ Carnot efficiency
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Practical Problems

• at state point 1 the steam is wet at TL and it is difficult to pump water/steam (two phase) to
state point 2

• can we devise a Carnot cycle to operate outside the wet vapor region

T

s s s

Q

Q

P  = P

P

P

H

L

1

1

4

4

3

2

– between state points 2 and 3 the vapor must be isothermal and at different pressures -
this is difficult to achieve

– the high temperature and pressure at 2 and 3 present metallurgical limitations

The Ideal Rankine Cycle

T

s

Q

Q

W

W

P  = P

P  = P

H

L

1

2

4

3

Q

Q

L

H

T

P

Boiler

Turbine

Condenser
Pump

• water is typically used as the working fluid because of its low cost and relatively large value
of enthalpy of vaporization

10



Device 1st Law Balance

Boiler h2 + qH = h3 ⇒ qH = h3 − h2 (in)

Turbine h3 = h4 + wT ⇒ wT = h3 − h4 (out)

Condenser h4 = h1 + qL ⇒ qL = h4 − h1 (out)

Pump h1 + wP = h2 ⇒ wP = h2 − h1 (in)

The net work output is given as

wT − wp = (h3 − h4)− (h2 − h1) = (h3 − h4) + (h1 − h2)

The Rankine efficiency is

ηR =
net work output

heat supplied to the boiler
=

(h3 − h4) + (h1 − h2)

(h3 − h2)

Example 3-5: For the steam power plant shown below,

T

s

Q

Q

W

W

P  = P

P  = P

H

L

1

2

4

3

Q

Q

L

H

T

P

Boiler

Turbine

Condenser
Pump

find: Q̇H, Q̇L, Ẇnet = ẆT − ẆP , and the overall cycle efficiency, ηR given the following
conditions:

P1 = 10 kPa P2 = 10 MPa
P3 = 10 MPa P4 = 10 kPa
T1 = 40 ◦C T3 = 530 ◦C
T2 = 110 ◦C
x4 = 0.9 ṁ = 5 kg/s
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