Important Concepts for ECE309 Final Exam

1. Fundamentals

- properties, property tables
- interpolation
- temperature and pressure dependence
- units, unit conversions
- conservation equations
- energy balances
- conservation of mass: steady flow
- force balance
- assumptions

2. Steady state conduction

- thermal resistance networks

$$
\text { Conduction: } \quad R_{\text {cond }}=\frac{L}{k A} \quad R=\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k \mathcal{L}} \quad R=\frac{r_{o}-r_{i}}{4 \pi k r_{i} r_{o}}
$$

Convection: $\quad R_{\text {conv }}=\frac{1}{h A}$
Radiation: $\quad R_{r a d}=\frac{1}{h_{r a d} A} \quad \longrightarrow \quad h_{r a d}=\epsilon \sigma\left(T_{s}^{2}+T_{s u r r}^{2}\right)\left(T_{s}+T_{s u r r}\right)$
Contact: $\quad \boldsymbol{R}_{\boldsymbol{c}}=\frac{1}{\boldsymbol{h}_{\boldsymbol{c}} A} \quad \longrightarrow \quad \boldsymbol{h}_{\boldsymbol{c}}$ see Table 10-2

- series resistance

$$
\dot{Q}=\frac{T_{\text {source }}-T_{\text {sink }}}{R_{\text {total }}} \quad \text { where } \quad \boldsymbol{R}_{\text {total }}=\sum_{i=1}^{n} \boldsymbol{R}_{i}
$$

- parallel resistance

$$
\dot{Q}=\sum \dot{Q}_{i}=\left(T_{\text {source }}-T_{\text {sink }}\right)\left(\sum \frac{1}{R_{i}}\right) \quad \text { where } \quad \frac{1}{R_{\text {total }}}=\sum_{1}^{n} \frac{1}{R_{i}}
$$

- overall heat transfer coefficient

$$
U A=\frac{1}{R_{\text {total }}}
$$

- critical thickness of insulation

$$
r_{c r, c y l}=\frac{k}{h} \quad[m] \quad r_{c r, s p h e r e}=\frac{2 k}{h} \quad[m]
$$

- finned rectangular surfaces
- temperature profile

$$
\frac{\boldsymbol{\theta}(\boldsymbol{x})}{\boldsymbol{\theta}_{b}} \Rightarrow \text { for i) prescribe tip temperature, ii) adiabatic tip, and infinitely long fin }
$$

- heat flow rate

$$
\dot{Q}_{b} \Rightarrow \quad \text { for i) prescribe tip temperature, ii) adiabatic tip, and infinitely long fin }
$$

- efficiency and effectiveness (analytical and graphical)

$$
\begin{aligned}
& \eta=\frac{\text { actual heat transfer rate }}{\text { maximum heat transfer rate when }}=\frac{\dot{Q}_{b}}{\boldsymbol{h P L} \boldsymbol{\theta}_{b}} \\
& \epsilon_{f \text { fin }}=\frac{\text { total fin heat transfer }}{\text { the heat transfer that would have }}=\frac{\dot{Q}_{b}}{h A_{c} \theta_{b}} \\
& \begin{array}{c}
\text { occurred through the base area } \\
\text { in the absence of the fin }
\end{array}
\end{aligned}
$$

- rectangular and non-rectangular cross sections (tables and charts)

3. Transient conduction

(a) Lumped system analysis

- $\quad B i=\frac{h \boldsymbol{V}}{\boldsymbol{k} \boldsymbol{A}}<0.1 \quad \Leftarrow$ slab $-\boldsymbol{L} \quad$ cylinder $=r / 2 \quad$ sphere $-r / 3$
$\bullet \frac{T(t)-T_{\infty}}{T_{i}-T_{\infty}}=e^{-t /\left(R_{t h} \cdot C_{t h}\right)}=e^{-t / \tau}=e^{-b t}$
- $\quad Q_{\text {total }}=m C\left(T_{i}-T_{\infty}\right)\left[1-e^{-t^{*} / \tau}\right]$
(b) Approximate analytical method

$$
\frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{\alpha} \frac{\partial T}{\partial t}
$$

The analytical solution to this equation takes the form of a series solution

$$
\frac{T(x, t)-T_{\infty}}{T_{i}-T_{\infty}}=\sum_{n=1,3,5 \ldots}^{\infty} A_{n} e^{\left(-\frac{\lambda_{n}}{L}\right)^{2} \alpha t} \cos \left(\frac{\lambda_{n} x}{L}\right)
$$

- $\boldsymbol{B i}>0.1$ and $\boldsymbol{F o} \boldsymbol{>} \mathbf{0 . 2}$
- Plane Wall: $\quad \theta_{\text {wall }}(x, t)=\frac{T(x, t)-T_{\infty}}{T_{i}-T_{\infty}}=A_{1} e^{-\lambda_{1}^{2} F o} \cos \left(\lambda_{1} x / L\right)$

Cylinder: $\quad \theta_{c y l}(r, t)=\frac{T(r, t)-T_{\infty}}{T_{i}-T_{\infty}}=A_{1} e^{-\lambda_{1}^{2} F o} \mathrm{~J}_{0}\left(\lambda_{1} r / r_{o}\right)$
Sphere: $\quad \theta_{s p h}(r, t)=\frac{T(r, t)-T_{\infty}}{T_{i}-T_{\infty}}=A_{1} e^{-\lambda_{1}^{2} F o} \frac{\sin \left(\lambda_{1} r / r_{o}\right)}{\lambda_{1} r / r_{o}}$

- solutions available for $\frac{Q}{Q_{\max }}$ where

$$
Q_{\max }=m c_{p}\left(T_{\infty}-T_{i}\right)=\rho \mathcal{V} c_{p}\left(T_{\infty}-T_{i}\right)
$$

(c) Heisler charts

- find $\boldsymbol{T}_{\mathbf{0}}$ at the center for a given time (Table 11-15 a, Table 11-16 a or Table 11-17
a)
- find \boldsymbol{T} at other locations at the same time (Table 11-15 b, Table 11-16 b or Table 11-17 b)
- find $\boldsymbol{Q}_{t o t}$ up to time \boldsymbol{t} (Table 11-15 c, Table 11-16 c or Table 11-17 c)
$\theta_{0}=\frac{T_{0}-T_{\infty}}{T_{i}-T_{\infty}}$

(a) Midplane temperature (From M. P. Heisler, Temperat ure Charts for Induction and Constant Temperature Heating," Trans. ASME 69, 1947, pp. 227-36. Reprinted by permission of ASME International.)

(b) Temperature distribution (From M. P. Heisler, "Temperature Charts for Induction and Constant Temperature Heating," Trans. ASME 69, 1947, pp. 227-36. Reprinted by permission of ASME International.)

(c) Heat transfer (From H. Gröber et al.)

4. Forced convection

- empirical correlations

$$
N u=f(R e, P r)=C_{2} \cdot R e^{m} \cdot \operatorname{Pr}^{n}=\frac{h_{x} \cdot x}{k_{f}} \Leftarrow \text { (plate) }
$$

(a) external flow

- transition, laminar to turbulent

$$
R e_{c r}=\frac{U_{\infty} x_{c r}}{\nu}
$$

- correlations:
- local versus average
- laminar versus turbulent versus blended
- UWT versus UWF
- range of Prandtl number
- other conditions
(b) internal flow
- mean velocity

$$
\begin{aligned}
U_{m} & =\frac{1}{A_{c}} \int_{A_{c}} u d A=\frac{\dot{m}}{\rho_{m} A_{c}} \\
R e_{D} & =\frac{U_{m} D}{\nu}
\end{aligned}
$$

- boundary layer thickness
- hydrodynamic BL

$$
\delta(x) \approx 5 x\left(\frac{U_{m} x}{\nu}\right)^{-1 / 2}=\frac{5 x}{\sqrt{R e_{x}}}
$$

- hydrodynamic entry length

$$
L_{h} \approx 0.05 R e_{D} D \quad \text { (laminar flow) }
$$

- thermal entry length

$$
L_{t} \approx 0.05 \operatorname{Re}_{D} \operatorname{Pr} D=\operatorname{Pr} L_{h} \quad \text { (laminar flow) }
$$

- Uniform wall heat flux

$$
\begin{aligned}
& T_{m, x}=T_{m, i}+\frac{\dot{q}_{w} A}{\dot{m} C_{p}} \\
& T_{w}=T_{m}+\frac{\dot{q}_{w}}{h}
\end{aligned}
$$

- Isothermal wall temperature

$$
\begin{aligned}
T_{o u t} & =T_{w}-\left(T_{w}-T_{i n}\right) \exp \left[-h A /\left(\dot{m} C_{p}\right)\right] \\
\Delta T_{l n} & =\frac{T_{o u t}-T_{i n}}{\ln \left(\frac{T_{w}-T_{o u t}}{T_{w}-T_{i n}}\right)}=\frac{T_{o u t}-T_{i n}}{\ln \left(\Delta T_{o u t} / \Delta T_{i n}\right)} \Rightarrow \dot{Q}=h A \Delta T_{l n}
\end{aligned}
$$

- correlations

5. Natural convection

- correlations

$$
\begin{aligned}
& N u=f(G r, P r) \equiv C G r^{m} P r^{n} \quad \text { where } R a=G r \cdot P r \\
& N u_{\mathcal{L}}=\frac{h \mathcal{L}}{k_{f}}=C(\underbrace{\frac{g \beta\left(T_{w}-T_{\infty}\right) \mathcal{L}^{3}}{\nu^{2}}}_{\equiv G r})^{1 / 4}(\underbrace{\frac{\nu}{\alpha}}_{\equiv P r})^{1 / 4}=C \underbrace{G r_{\mathcal{L}}^{1 / 4} P r^{1 / 4}}_{R a^{1 / 4}} \\
& N u_{D}=\frac{h D}{k_{f}}=C(\underbrace{\frac{g \beta\left(T_{w}-T_{\infty}\right) D^{3}}{\nu^{2}}}_{\equiv G r})^{1 / 4}(\underbrace{\frac{\nu}{\alpha}}_{\equiv P r})^{1 / 4}=C \underbrace{G r_{D}^{1 / 4} P r^{1 / 4}}_{R a_{D}^{1 / 4}}
\end{aligned}
$$

6. Radiation

(a) Blackbody radiation

- blackbody emissive power

$$
\boldsymbol{E}_{b}=\sigma \boldsymbol{T}^{4} \quad\left[\boldsymbol{W} / \boldsymbol{m}^{2}\right] \quad \Leftarrow \text { Stefan-Boltzmann law }
$$

- blackbody radiation function

$$
\begin{aligned}
f_{0 \rightarrow \lambda} & =\frac{\int_{0}^{t} \frac{C_{1} T^{5}(1 / T) d t}{t^{5}\left[\exp \left(C_{2} / t\right)-1\right]}}{\sigma T^{4}} \\
& =\frac{C_{1}}{\sigma} \int_{0}^{\lambda T} \frac{d t}{t^{5}\left[\exp \left(C_{2} / t\right)-1\right]} \\
& =f(\lambda T) \\
f_{\lambda_{1} \rightarrow \lambda_{2}} & =f\left(\lambda_{2} T\right)-f\left(\lambda_{1} T\right) \\
f_{\lambda \rightarrow \infty} & =1-f_{0 \rightarrow \lambda}
\end{aligned}
$$

- emissivity

$$
\epsilon(T)=\frac{\text { radiation emitted by surface at temperature } T}{\text { radiation emitted by a black surface at } T}
$$

$$
=\frac{\int_{0}^{\infty} E_{\lambda}(T) d \lambda}{\int_{0}^{\infty} E_{b \lambda}(T) d \lambda}=\frac{\int_{0}^{\infty} \epsilon_{\lambda}(T) E_{b \lambda}(T) d \lambda}{E_{b}(T)}=\frac{E(T)}{\sigma T^{4}}
$$

- View Factor

$$
F_{i \rightarrow j}=\frac{\dot{Q}_{i \rightarrow j}}{A_{i} J_{i}}=\frac{\text { radiation reaching } j}{\text { radiation leaving } i}
$$

- radiation exchange between surfaces

- assumptions: enclosure, diffuse-gray, opaque surfaces, isothermal surfaces, uniform radiosity and irradiation, non-participating medium
- surface resistance

$$
Q_{i}=\frac{\boldsymbol{E}_{b, i}-J_{i}}{\left(\frac{1-\epsilon_{i}}{\boldsymbol{\epsilon}_{i} \boldsymbol{A}_{i}}\right)} \equiv \frac{\text { potential difference }}{\text { surface resistance }}
$$

- space resistance

$$
\dot{Q}_{i}=\sum_{j=1}^{N} \frac{J_{i}-J_{j}}{\left(\frac{1}{A_{i} F_{i \rightarrow j}}\right)} \equiv \frac{\text { potential difference }}{\text { space resistance }}
$$

- simplifying assumptions
* black surfaces

$$
\epsilon_{i}=\alpha_{i}=1
$$

and

$$
\boldsymbol{J}_{i}=\boldsymbol{E}_{b, i}=\sigma \boldsymbol{T}_{i}^{4} \Leftarrow
$$

* re-radiating, fully insulated surfaces
heat flow into the node equal heat flow out of the node

$$
\dot{Q}_{i}=0
$$

