Hottel Crossed String Method

Can be applied to 2D problems where surfaces are any shape, flat, concave or convex. Note for a 2 D surface the area, \boldsymbol{A} is given as a length times a unit width.

$$
\boldsymbol{A}_{1} \boldsymbol{F}_{12}=\boldsymbol{A}_{2} \boldsymbol{F}_{21}=\frac{(\text { total crossed })-(\text { total uncrossed })}{2}
$$

\boldsymbol{A}_{1} and \boldsymbol{A}_{2} do not have to be parallel

$$
A_{1} F_{12}=A_{2} F_{21}=\frac{1}{2}[\underbrace{(a c+b d)}_{\text {crossed }}-\underbrace{(b c+a d)}_{\text {uncrossed }}]
$$

Proof:

$$
\begin{aligned}
A_{1} F_{1 b d} & =\frac{a b+b d-a d}{2} \\
A_{1} F_{1 a d} & =\frac{a b+a d-b d}{2} \\
A_{1} F_{1 a c} & =\frac{a b+a c-b c}{2} \\
A_{1} F_{1 b c} & =\frac{a b+b c-a c}{2}
\end{aligned}
$$

but for an enclosure we have

$$
A_{1} F_{1 a d}+A_{1} F_{1 b c}+A_{1} F_{12}=A_{1}
$$

$$
\begin{equation*}
A_{1} F_{12}=A_{1}-\left\{A_{1} F_{1 a d}+A_{1} F_{1 b c}\right\} \tag{1}
\end{equation*}
$$

Substituting $\boldsymbol{F}_{\mathbf{1 a d}}$ and $\boldsymbol{F}_{\mathbf{1 b c}}$ into Eq. (1) yields

$$
\begin{aligned}
A_{1} F_{12} & =a b-\left\{\frac{a b+a d-b d}{2}+\frac{a b+b c-a c}{2}\right\} \\
& =\frac{2 a b-a b-a d+b d-a b-b c+a c}{2} \\
& =\frac{(a c+b d)-(b c+a d)}{2} \Leftarrow \text { cross strings formula }
\end{aligned}
$$

Two Half Cylinders

Background

1. Arc Length: The arc length of a sector is given as $\boldsymbol{s}=\boldsymbol{r} \boldsymbol{\theta}$
2. Pythagorean Theorem: $f o^{2}=f b^{2}+b o^{2}$
3. Complimentary Angle Theorem: $\angle a f b=\angle f o b$ since $\angle a f o=90^{\circ}$ and the two acute angles in triangle fbo also equal 90°

By symmetry

$$
\begin{aligned}
a b & =c d=r \theta \quad \text { (arc length and symmetry) } \\
\theta & =\sin ^{-1} \frac{f b}{f o}=\sin ^{-1} \frac{r}{r+s / 2}=\sin ^{-1} \frac{1}{1+\frac{s}{2 r}} \\
b o & =o c=\sqrt{(f o)^{2}-(f b)^{2}} \quad \text { (Pythagorean theorm) } \\
& =\sqrt{\left(r+\frac{s}{2}\right)^{2}-r^{2}} \\
& =r \sqrt{(\underbrace{1+\frac{s}{2 r}}_{\equiv x})^{2}-1} \\
& =r \sqrt{x^{2}-1}
\end{aligned}
$$

Let $x=1+s /(2 r) ; \quad \theta=\sin ^{-1} 1 / x ;$

$$
a e=s+2 r=2 r\left(1+\frac{s}{2 r}\right)=2 r x
$$

Therefore

$$
A_{1} F_{12}=A_{2} F_{21}=a d-a e=\overbrace{\underbrace{2 r \sqrt{x^{2}-1}}_{a d}}^{2 b o}+\overbrace{2 r \sin ^{-1} \frac{1}{x}}^{2 r \theta}-\underbrace{2 r x}_{a e}
$$

Since $\boldsymbol{A}_{1}=\pi r \quad$ (from tight strings across cylinder)

$$
F_{12}=\frac{2}{\pi}\left\{\sqrt{x^{2}-1}+\sin ^{-1} \frac{1}{x}-x\right\}
$$

where

$$
x=1+\frac{s}{2 r}
$$

